Project Icon

LTSF-Linear

线性模型在时间序列预测中的应用

LTSF-Linear是一个高效的线性模型家族,包括Linear、NLinear和DLinear,专为时间序列预测设计。该模型支持单变量和多变量长时间预测,具有高效率、可解释性和易用性,显著优于Transformer模型。

chronos-t5-tiny - 轻量级时间序列预测模型 基于T5架构设计
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Tiny是一款轻量级时间序列预测模型,基于T5架构设计。该模型将时间序列转换为token序列进行训练,能够生成概率性预测并支持多轨迹采样。与原始T5相比,Chronos-T5-Tiny仅使用4096个不同token,参数量减少至800万,更加精简高效。研究人员和开发者可通过简洁的Python接口快速应用此模型进行时间序列分析。
skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
MOMENT-1-large - 多功能时间序列分析基础模型:预测、分类、异常检测和填补
GithubHuggingfaceMOMENT基础模型开源项目时间序列分析机器学习模型预训练模型
MOMENT-1-large是一款专为时间序列分析设计的多功能基础模型。它能够高效处理预测、分类、异常检测和数据填补等多种任务。该模型具有出色的零样本和少样本学习能力,可以在缺少或仅有少量任务特定样本的情况下直接使用。此外,MOMENT-1-large支持使用领域相关数据进行微调,以进一步提升性能。作为一个灵活而强大的工具,它为各类时间序列分析任务提供了有力支持。
chronos-t5-mini - 开源时间序列预测模型实现高效概率预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Mini是基于T5架构开发的时间序列预测模型,参数规模为2000万。模型通过将时间序列转换为token序列进行训练,采用多轨迹采样方式实现概率预测。模型在公开时间序列数据集和高斯过程生成的合成数据上完成预训练,采用4096大小的词汇表,相比原始T5模型显著降低了参数量同时保持了预测性能。
StableLM - 一系列由Stability AI持续开发的语言模型
GithubStability AIStableLM人工智能开源项目模型架构热门语言模型
StableLM包括一系列由Stability AI持续开发的语言模型,涵盖从基础模型到经过优化调整的高级版本。项目提供多样化的模型,如StableLM-3B-4E1T和StableLM-Alpha系列,旨在通过高效的训练方法和精细的数据使用,提高模型性能和应用灵活性。此外,StableLM也适用于多种下游任务,为开发者和研究者提供了强大的工具,以推动人工智能领域的发展。
TimeMixer - 多尺度混合技术推动时间序列预测新突破
GithubICLRMLP架构TimeMixer多尺度混合开源项目时间序列预测
TimeMixer是一种基于MLP架构的时间序列预测模型,通过多尺度混合技术实现长短期预测的性能突破。该模型利用Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块处理多尺度时间序列,在多个基准数据集上展现出优异性能。TimeMixer不仅预测精度高,还具备良好的运行效率,适用于多种要求高效预测的应用场景。
LightGBMLSS - LightGBM概率建模扩展框架 实现全条件分布预测
GithubLightGBMLSS分布预测开源项目机器学习梯度提升概率建模
LightGBMLSS作为LightGBM的扩展框架,实现了单变量目标全条件分布的建模和预测。该框架支持多种分布类型,包括连续、离散和混合分布,并具备归一化流和混合密度等先进功能,能够有效处理复杂的多模态数据。LightGBMLSS自动推导梯度和海森矩阵,集成了超参数优化和可解释性分析功能,同时保持与LightGBM的完全兼容。这一框架为概率建模提供了全面而灵活的解决方案。
chronos-t5-large - 基于T5架构的大规模时间序列预测模型
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Large是一个拥有7.1亿参数的大规模时间序列预测模型。该模型基于T5架构,通过将时间序列转化为token序列进行训练,能生成概率性预测。Chronos-T5-Large在大量公开和合成时间序列数据上训练,可处理多种预测任务。研究人员和开发者可通过Python接口使用该模型,适用于需要高精度分析的时间序列场景。
SOFT - 无需softmax的线性复杂度Transformer模型
GithubTransformer图像分类开源项目目标检测线性复杂度自注意力机制
SOFT是一种新型Transformer模型,采用无需softmax的归一化自注意力机制,实现了线性复杂度和更强的泛化能力。该模型在图像分类、目标检测和语义分割等计算机视觉任务中表现优异。项目提供多种规模的预训练模型,适用于不同应用场景。开源代码包含完整的训练和评估流程,并附有详细说明,便于研究人员进行深入研究和应用开发。
scalecast - 功能全面的时间序列预测Python库
GithubPython库Scalecast开源项目数据可视化时间序列预测机器学习
Scalecast是一个功能全面的时间序列预测Python库。它提供统一的机器学习建模接口,支持LSTM、ARIMA等多种模型类型。该库集成了自动特征选择、超参数调优、模型堆叠等功能,并提供便捷的数据可视化工具。Scalecast致力于简化复杂的时间序列预测任务,适用于不同规模的预测项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号