Project Icon

graph-cut-ransac

高效鲁棒性估计算法,支持同源矩阵、基础矩阵及6D姿态估计

Graph-Cut RANSAC是一种用于同源矩阵、基础矩阵和6D姿态估计的鲁棒性算法。它已包括在OpenCV中,并支持通过pip安装Python封装,或通过CMake编译C++源码。该算法的应用示例可通过Jupyter Notebook进行演示,主要依赖Eigen、CMake和OpenCV库,适用于现代编译器。

patchwork-plusplus - 基于3D点云的高效地面分割算法Patchwork++
3D感知GithubPatchwork++地面分割开源项目机器人技术点云处理
Patchwork++是Patchwork算法的改进版,专注于3D点云地面分割。该算法具有快速、稳健和自适应特性,有效解决了欠分割问题。项目提供C++、Python和ROS2支持,适用于多种开发环境。凭借在多个数据集上的出色表现,Patchwork++成为自动驾驶和机器人导航领域的重要工具。
face-alignment - 高精度2D与3D人脸标志检测工具
2D特征点3D特征点Face AlignmentGithub开源项目深度学习面部识别
本项目基于FAN的先进深度学习方法,提供高精度的2D和3D人脸标志检测。支持多种面部检测器,并可在CPU和GPU上运行。用户可通过pip或conda安装,并能处理整目录图像。适用于Python 3.5+,推荐使用CUDA GPU以获得最佳性能。欢迎贡献和反馈,详情请参阅原始论文及项目页面。
GeoGaussian - 几何感知高斯分布的场景渲染新方法
3D GaussiansGithub几何约束场景渲染开源项目新视角合成点云
GeoGaussian是一种创新的场景渲染方法,利用几何感知的高斯分布优化来保持场景结构。它通过初始化表面对齐的薄高斯分布和约束优化,有效保持了场景的几何和纹理特征。该方法在新视角合成和几何重建方面表现优异,尤其适合结构化区域。项目开源了代码、数据集和使用说明,为计算机视觉研究提供了有价值的资源。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
graphics - 深度学习与计算机图形学的融合框架
3D视觉GithubTensorFlow Graphics开源项目机器学习神经网络计算机图形学
TensorFlow Graphics是一个融合深度学习与计算机图形学的开源框架。它提供可微分的图形和几何层,包括相机模型、反射模型、空间变换和网格卷积等,同时支持3D可视化。这些工具可用于开发和优化3D视觉任务的机器学习模型,如物体姿态估计、材质分析和语义分割。该框架致力于帮助研究人员和开发者更高效地解决复杂的3D视觉问题。
ED-Pose - 革新端到端多人姿态估计框架
ED-PoseGithub多人姿态估计开源项目深度学习目标检测计算机视觉
ED-Pose创新性地将多人姿态估计任务重新定义为两个显式框检测过程,无需后处理和密集热图监督。该框架在COCO数据集上超越同等骨干网络的热图方法1.2 AP,并在CrowdPose数据集上达到76.6 AP的领先水平。ED-Pose还兼容Human-Art数据集,并优化了推理速度。
speed-camera - 基于计算机视觉的开源运动目标速度测量系统
GithubOpenCVPythonSpeed Camera开源项目树莓派物体运动追踪
speed-camera是一个基于Python和OpenCV的开源运动目标速度测量系统。它支持树莓派、Windows和Unix平台,兼容多种摄像头,可自动检测和跟踪画面中最大移动物体并计算速度。系统提供灵活配置、数据记录和Web界面,适用于交通监控等场景。此外还集成了数据分析、图表生成等管理工具,方便用户进行后续处理。
litepose - 高效实时多人姿态估计的单分支架构
GithubLitePose人体姿态估计大核卷积开源项目效率优化边缘设备
LitePose是一种针对边缘设备的高效单分支架构,专用于实时多人姿态估计。通过融合解卷积头和大卷积核,该模型显著提升了性能。在移动平台上,LitePose将延迟降低5倍,同时保持估计精度。项目开源了预训练模型、训练脚本和评估工具,支持COCO和CrowdPose数据集。
dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
3D场景生成DreamScene4DGithub多目标跟踪开源项目视频处理计算机视觉
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
DepthCrafter - 生成开放世界视频的长序列一致深度估计
DepthCrafterGithubHuggingface人工智能开源项目模型深度估计视频处理计算机视觉
DepthCrafter是一个开源深度估计项目,专门为开放世界视频生成时间一致的长序列深度图。该项目无需相机姿态或光流信息,可直接处理复杂场景视频,并保留精细细节。DepthCrafter在计算机视觉和3D重建领域具有潜在应用,为视频深度估计研究开辟新方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号