Project Icon

pebblo-classifier

基于BERT的文本分类工具,优化协议文件整理

Pebblo Classifier是由DAXA.AI开发的文本分类模型,能够高效地对组织中的协议文档进行分类。该模型基于BERT技术,并从distilbert-base-uncased进行细调,支持21种文档标签分类,如董事会协议和咨询协议,简化文档整理过程。无需重新微调,用户可以通过简单代码实现快速集成。测试结果显示了模型的高精度和可靠性。

项目介绍:pebblo-classifier

项目概述

Pebblo Classifier是一款专注于文本分类的机器学习系统,由DAXA.AI开发。这款模型以BERT为基础,通过对distilbert-base-uncased模型进行微调,主要用于RAG(Retrieve-And-Generate)应用场景。Pebblo Classifier的最大亮点在于其能够对组织结构中的多种协议文档进行分类,该模型共识别21种不同的标签,从而简化了文档分类过程。

  • 开发方: DAXA.AI
  • 资金来源: 开源项目
  • 模型类型: 分类模型
  • 使用语言: 英语
  • 许可证: MIT
  • 微调基础模型: distilbert-base-uncased

模型资源

使用说明

Pebblo Classifier设计用于直接应用于文档分类,无需进行额外的微调便可立即部署应用。不过,使用者需要注意模型可能存在的偏见和局限性,了解这些方面能更好地应用模型。

如何开始使用模型

以下是使用Pebblo Classifier的Python代码示例:

# 导入必要的库
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import joblib
from huggingface_hub import hf_hub_url, cached_download

# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained("daxa-ai/pebblo-classifier")
model = AutoModelForSequenceClassification.from_pretrained("daxa-ai/pebblo-classifier")

# 示例文本
text = "Please enter your text here."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

# 对logits应用softmax
probabilities = torch.nn.functional.softmax(output.logits, dim=-1)

# 获取预测标签
predicted_label = torch.argmax(probabilities, dim=-1)

# Hugging Face模型库的URL
REPO_NAME = "daxa-ai/pebblo-classifier"

# 模型库中标签编码器文件的路径
LABEL_ENCODER_FILE = "label_encoder.joblib"

# 构建标签编码器文件的URL
url = hf_hub_url(REPO_NAME, filename=LABEL_ENCODER_FILE)

# 下载并缓存标签编码器文件
filename = cached_download(url)

# 加载标签编码器
label_encoder = joblib.load(filename)

# 解码预测标签
decoded_label = label_encoder.inverse_transform(predicted_label.numpy())

print(decoded_label)

训练详情

训练数据

Pebblo Classifier的训练数据集包含141,055条数据,覆盖了21种不同的标签。这些标签涵盖了各种文档类型,数据样本分布于三种文本长度规格(128 ± x、256 ± x、512 ± x 单词;其中x在20以内变化)。

测试数据与评估指标

在测试数据上共有86,281条样本,温度范围为1-1.25用于评估模型的有效性。下表列出了一些主要的评估指标,以宏平均和加权平均方式汇总的精度、召回率和F1得分揭示出模型的整体表现。

  • 精度(accuracy): 84%
  • 精确率(precision): 87.94%
  • 召回率(recall): 84.24%
  • F1分数: 85.05%

结果总结

通过以上测试数据的验证,Pebblo Classifier表现出优异的分类能力。模型在多种协议类型上达到了较高的精度和召回率,总体F1分数达到了85.05%。 이러한 평가 지표는 모델의 예측과 실제 값 사이의 차이를 측정하는 평가 손실 (eval loss)이 0.6815 인 것과 일치한다.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号