Project Icon

monster

现代C++模板元编程框架助力编译时算法开发

Monster是一款基于C++20的模板元编程框架,专为编译时算法和序列操作设计。它提供了一套完整的工具,支持纯类型编程,并充分利用了概念和Lambda模板等现代C++特性。作为一个仅包含头文件的库,Monster无需额外依赖,适用于各种需要高效编译时计算的项目。该框架通过简化高级模板元编程的复杂性,使开发者能更轻松地实现和维护相关代码。

mmengine - 深度学习训练引擎支持大规模模型训练和多种策略
GithubMMEngineOpenMMLabPyTorch开源项目深度学习训练引擎
MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。
moka - Rust高性能并发缓存库 优化的缓存替换算法
GithubMokaRust并发缓存开源项目线程安全高性能
Moka是一个快速、并发的Rust缓存库,基于哈希表实现。它支持高并发检索和更新,采用先进的缓存替换算法实现容量限制。Moka提供同步和异步缓存、基于数量或权重的边界、过期策略和驱逐监听等功能,适用于需要高性能缓存的Rust项目。
mir - 多平台轻量级JIT编译器框架
GithubJIT编译器MIR中间表示代码优化开源项目编译器项目
MIR是一个轻量级JIT编译器框架,为快速高效的即时编译器实现提供基础。支持x86_64、ARM64、POWER等多种架构,采用强类型中间表示。MIR提供API用于创建模块、函数和指令,支持二进制和文本格式代码处理。编译器使用简化优化流程,包括函数内联和全局公共子表达式消除等,在编译速度和代码性能间取得平衡。MIR适用于需要快速、轻量级JIT编译的项目开发。
m2 - 子二次GEMM架构Monarch Mixer实现高效语言模型
GithubM2-BERTMonarch Mixer人工智能开源项目机器学习自然语言处理
Monarch Mixer是一种创新的子二次GEMM架构,用于训练序列长度和模型维度均为子二次的语言模型。该架构使用Monarch矩阵层替代Transformer中的注意力和MLP操作,提高了计算效率。基于此架构的M2-BERT模型在减少25%参数和计算量的同时,在GLUE基准测试中达到了与BERT相当的性能。项目开源了预训练模型权重以及预训练和微调代码,方便研究者进行further研究。
MegEngine - 高效、可扩展且易于使用的深度学习框架
GithubMegEngine开源项目深度学习框架硬件需求训练与推理高性能
MegEngine是一个高效、可扩展且易于使用的深度学习框架,具有统一的训练和推理框架、低硬件要求和跨平台高效推理的三大关键特性。支持x86、Arm、CUDA、RoCM等多种平台,兼容Linux、Windows、iOS、Android等系统。通过DTR算法和Pushdown内存规划器,大幅降低GPU内存使用。适用于模型开发到部署的各个环节,致力于构建开放友好的AI社区。
llm.c - 纯C和CUDA实现的高效轻量级语言模型训练框架
CUDAC语言GPU训练GithubLLM开源项目
llm.c是一个使用纯C和CUDA实现的高效轻量级语言模型训练框架。该项目不依赖PyTorch或cPython等大型框架,通过简洁代码实现GPT-2和GPT-3系列模型的预训练。llm.c支持单GPU、多GPU和多节点训练,提供详细教程和实验示例。项目在保持代码可读性的同时追求高性能,适用于教育和实际应用。此外,llm.c支持多种硬件平台,并有多个编程语言的移植版本。
frugally-deep - 在C++中运行Keras模型,无需依赖TensorFlow的小型的头文件库
C++GithubKerasTensorFlowfrugally-deep开源项目模型预测
frugally-deep是一个小型的头文件库,允许在C++中运行Keras模型进行预测而无需依赖TensorFlow。它依赖于FunctionalPlus、Eigen和json头文件库,支持复杂的模型拓扑,并显著减小二进制大小。项目特点包括支持多种层类型、节省RAM以及通过并行处理提高预测性能。frugally-deep在单核CPU上表现相对较快,适合内存敏感和需要快速部署的应用。
qpcpp - 实时嵌入式编程框架 实现事件驱动的主动对象模型
GithubQP/C++事件驱动实时嵌入式框架并发编程开源项目状态机
QP/C++是一款轻量级开源实时嵌入式框架,用于构建基于异步事件驱动主动对象的嵌入式软件系统。该框架采用更安全的并发模型,支持分层状态机,内置实时内核,可与传统RTOS集成。经过20年发展,QP/C++在商业和开源领域广受欢迎,应用范围涵盖植入式医疗设备到复杂武器系统等多种电子产品。
deepdetect - 用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架
APIDeepDetectGithub图像分类开源项目机器学习深度学习
DeepDetect是一个用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架。它专注于易用性和高性能,支持分类、目标检测、分割、回归等任务,适用于图像、文本和时间序列数据。该工具可自动将模型转换为嵌入式平台(如TensorRT、NCNN),无需数据库,所有数据和模型参数均存储在文件系统中。DeepDetect通过JSON格式通信,提供Python和Javascript客户端,易于集成到现有应用中。
askama - Rust编译时模板引擎 基于Jinja语法
AskamaGithubRust开源项目性能优化模板引擎编译时生成
Askama是一个在编译时生成Rust代码的模板引擎,采用类似Jinja的语法。它支持模板继承、循环和条件语句,提供内置过滤器和自定义语法选项。Askama以类型安全、高性能和易用性为特点,兼容多个主流Web框架。这个开源项目为Rust开发者提供了高效的模板渲染解决方案,适用于各种需要模板功能的Rust项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号