Project Icon

deeptime

Python时间序列分析与动态建模库

deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。

temporian - 高效可靠的时间数据预处理库
GithubPython库Temporian开源项目数据预处理时间数据处理特征工程
Temporian是一个专注于时间序列分析和数据预处理的Python库。它支持多种时间数据类型,包括多变量时间序列、事件日志和跨源事件流。经过优化,Temporian在处理时间数据时的效率可达常规库的1000倍。此外,它还提供了防止数据泄露的功能,并能与现有机器学习生态系统无缝集成,为时间数据处理提供了高效可靠的解决方案。
pmdarima - Python时间序列分析库 支持自动ARIMA建模和多种统计测试
GithubPythonpmdarima开源项目时间序列分析统计库自动ARIMA
pmdarima是一个Python统计库,旨在增强时间序列分析能力。它实现了类似R语言auto.arima的功能,提供多种统计测试、时间序列工具、转换器和特征提取器。该库支持季节性分解、交叉验证,并包含丰富的内置数据集。基于statsmodels构建,pmdarima采用类scikit-learn的接口设计,便于用户构建和部署时间序列模型。
skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
dtaidistance - 快速时间序列距离计算库
DTWGithub动态时间规整开源项目时间序列聚类距离计算
dtaidistance是一个高效的时间序列距离计算Python库。它提供纯Python和优化的C实现,支持动态时间规整(DTW)等算法。该库与NumPy和Pandas兼容,避免了不必要的数据复制。支持多维时间序列、子序列搜索和聚类。dtaidistance为时间序列分析和机器学习提供了快速的距离计算工具,是处理时序数据的理想选择。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
tsfresh - 时间序列特征自动提取和分析的Python开源工具
GithubPythontsfresh开源项目时间序列机器学习特征提取
tsfresh是一个开源Python库,专注于时间序列数据的自动特征提取。它集成了统计学、时间序列分析、信号处理和非线性动力学的算法,并提供了特征选择机制。该工具可处理多种采样数据和事件序列,提供100多种预定义特征,并通过内置过滤程序评估特征重要性。tsfresh支持回归和分类任务,兼容sklearn、pandas和numpy,可在本地或集群环境运行,为时间序列分析提供了高效解决方案。
functime - 高性能时间序列机器学习Python库
GithubPolarsPython库全局预测开源项目时间序列机器学习特征提取
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。
Time-Series-Analysis-with-Python-Cookbook - Python时间序列分析与预测实战指南
GithubPython开源项目数据科学时间序列分析机器学习预测
这本书全面介绍Python时间序列分析和预测技术,涵盖数据获取、预处理和高级建模。内容包括统计方法、机器学习和深度学习算法,以及使用TensorFlow、PyTorch等框架进行预测。通过实用代码示例和案例研究,读者可以学习处理复杂时间序列数据、进行异常检测,并解决实际业务问题。适合数据分析师和开发者提升时间序列分析技能。
gluonts - 基于深度学习的概率时间序列建模工具包
GithubGluonTSPython开源项目时间序列预测概率模型深度学习
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号