Project Icon

distilbert-base-cased-finetuned-conll03-english

基于DistilBERT的英语命名实体识别模型

这是一个基于distilbert-base-cased模型微调的英语命名实体识别(NER)工具。该模型在conll2003英语数据集上训练,对大小写敏感,在验证集上达到98.7%的F1分数。它能够有效识别和分类文本中的人名、地名和组织名等命名实体,为各种自然语言处理任务提供支持。

sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
lm-ner-linkedin-skills-recognition - LinkedIn技能识别的深度学习模型
GithubHuggingfacelm-ner-linkedin-skills-recognition开源项目模型精度训练评价
该模型通过对distilbert-base-uncased进行LinkedIn领域的微调,展示出高效的技能识别性能。在评估集上,它达到了高精度(0.9119)、召回率(0.9312)和F1值(0.9214),准确率更是高达0.9912,适用于需要高可靠性技能识别的场景。
stsb-distilbert-base - 语义搜索与聚类任务的句子嵌入模型
GithubHuggingfacesentence-transformers句子嵌入开源项目机器学习模型模型自然语言处理语义搜索
此模型将句子和段落转换为768维的稠密向量,适用于语义搜索和聚类任务。然而,由于其性能已不再是最优,建议选择更优质的句子嵌入模型。如需使用,可通过安装sentence-transformers库轻松实现,或使用HuggingFace Transformers进行更高级的处理,如加入注意力掩码的平均池化。尽管模型效能下降,其架构仍有参考价值。
SpanMarkerNER - 命名实体识别的高效训练框架
BERTGithubHugging FaceNamed Entity RecognitionRoBERTaSpanMarker开源项目
SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
robust-sentiment-analysis - 使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
GithubHuggingfacedistilBERT合成数据客户反馈开源项目情感分析模型社交媒体分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
distiluse-base-multilingual-cased - 多语言句子嵌入模型支持语义搜索和文本相似度分析
GithubHuggingfacesentence-transformers句子相似度向量嵌入多语言模型开源项目模型语义搜索
distiluse-base-multilingual-cased是基于sentence-transformers的多语言句子嵌入模型,将句子和段落映射至512维向量空间。该模型支持多语言处理,适用于聚类、语义搜索和跨语言文本相似度分析。它提供高质量的句子嵌入,并可通过简洁的Python代码实现句子编码,为自然语言处理任务提供有力支持。
ernie - 简化BERT模型的文本分类与预测工具
BERTErnieGithub句子分类开源项目模型微调预测
Ernie是一个基于BERT的Python库,为文本分类和预测任务提供简洁接口。它支持多种预训练模型,允许微调和自定义。Ernie具备灵活的文本分割和结果聚合策略,能够处理长文本,并提供模型保存、加载和自动保存功能。这个工具适用于情感分析、文本分类等多种自然语言处理任务,为NLP研究和开发提供了便捷的解决方案。
nli-distilroberta-base-v2 - sentence-transformers模型实现句子向量化和语义分析
GithubHuggingfaceRoBERTasentence-transformers向量嵌入开源项目模型自然语言处理语义搜索
nli-distilroberta-base-v2是一个基于sentence-transformers的句子嵌入模型,将文本映射到768维向量空间。该模型适用于聚类、语义搜索等任务,使用简单且效果出色。它支持通过几行代码生成句子嵌入,为自然语言处理提供了有力工具。
entity-recognition-datasets - 多领域实体识别和命名实体识别任务数据集
AnnotationsDatasetsEntity RecognitionGithubNERNamed Entity Recognition开源项目
此库包含多个领域的实体识别和命名实体识别(NER)任务数据集,包括新闻、社交媒体、医学等。项目提供数据目录和转换代码,部分数据因许可证限制无法直接共享。虽然自2020年起更新较少,但仍接受通过issue或pull request添加的数据集,并支持多种语言的NER数据,如德语、西班牙语和荷兰语等。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号