Project Icon

mteb

多任务文本嵌入模型评估基准

MTEB是一个开源的文本嵌入模型评估基准,涵盖多种任务类型和语言。它提供标准化的测试集、灵活的评估配置和公开排行榜。研究人员可以使用MTEB评估自定义模型,添加新任务,并进行模型性能比较,从而推动文本嵌入技术的进步。

SFR-Embedding-2_R - 增强自然语言处理性能的多任务算法模型
GithubHuggingfaceSalesforce/SFR-Embedding-2_R分类开源项目检索模型评估
SFR-Embedding-2_R项目结合分类、检索、聚类及重排序任务,提供高级自然语言处理解决方案。在MTEB多个数据集上进行测试,展示了在情感分类、亚马逊评论分类等任务中的高性能表现,适用于需要高效灵活性的应用场景,尤其在复杂数据集中的表现更加出色。
snowflake-arctic-embed-m - 多语言句子嵌入模型助力相似度计算和语义搜索
GithubHuggingfacesentence-transformers分类开源项目检索模型相似度计算聚类
snowflake-arctic-embed-m是一个开源的句子嵌入模型,主要用于多语言环境下的相似度计算和语义搜索。在MTEB基准测试中,该模型在分类、聚类和检索等任务上展现了不错的性能。它能够处理多种语言,有效提取句子的语义信息,为各类自然语言处理应用提供嵌入表示。模型适用于文本分类、信息检索和语义相似度计算等场景。
multilingual-e5-small - 多语言句子嵌入模型支持100多种语言
GithubHuggingface分类句子转换器多语言开源项目检索模型聚类
multilingual-e5-small是一个支持100多种语言的句子嵌入模型。该模型在MTEB基准测试的分类、检索、聚类等任务中表现良好,适用于跨语言文本匹配和相似度计算。作为轻量级模型,它可在信息检索、文本分类和机器翻译等领域发挥作用,同时保持较低的计算资源需求。
gte-Qwen2-1.5B-instruct - 先进语言模型在MTEB多任务评估中的优异成绩
GithubHuggingfaceMTEBQwen2句子相似度开源项目模型模型评估自然语言处理
gte-Qwen2-1.5B-instruct模型在多任务基准测试(MTEB)中展现出优秀性能。该模型在分类、检索、聚类等NLP任务上表现突出,涵盖情感分析、句子相似度计算和问答等领域。在准确率、F1分数和MAP等关键指标上,gte-Qwen2-1.5B-instruct均取得了良好成绩,体现了其处理多样化语言任务的能力。
jina-embeddings-v2-base-es - 双语智能文本嵌入模型 英语和西班牙语文本向量化解决方案
GithubHuggingfacesentence-transformers开源项目文本相似度机器学习模型特征提取自然语言处理
这是一款针对英语和西班牙语优化的文本嵌入模型。在MTEB基准测试中表现优异,可高效处理文本分类、检索和聚类等任务。模型支持跨语言文本相似度计算,适用于双语内容处理场景。基于sentence-transformers框架开发,具备出色的文本特征提取能力。
e5-large - 句子嵌入模型应用于文本分类与检索,提升准确率
GithubHuggingfaceMTEBSentence Transformerssentence-similarity分类开源项目检索模型
项目利用Sentence Transformers技术,提升自然语言处理任务中的句子嵌入效率,涵盖分类、检索、聚类及重排序等。该模型在多数据集上优异,尤其是在Amazon极性分类的准确率达90.05%。通过优化句子相似性,增强了在BIOSSES等任务中的相关性得分,是语义搜索和信息检索的理想之选,支持多语言文本分析。
stella-base-en-v2 - 多任务英语文本嵌入模型用于自然语言处理
GithubHuggingfacesentence-transformers信息检索句子相似度开源项目文本分类模型特征提取
stella-base-en-v2是一个英语文本嵌入模型,在MTEB基准测试的多个自然语言处理任务中展现出优异性能。这些任务包括文本分类、检索、聚类和语义相似度等。该模型适用于信息检索、问答系统和文本分析等多种应用场景。其特点是在多样化任务中保持较高准确率,提供了一个多功能的文本处理解决方案。
SEED-Bench - 多模态大语言模型评估基准
GithubSEED-Bench人工智能基准测试多模态大语言模型开源项目评估维度
SEED-Bench是一个全面评估多模态大语言模型的基准测试。它包含28K个多项选择题,涵盖34个评估维度,包括文本和图像生成能力。该项目提供SEED-Bench-H、SEED-Bench-2-Plus等多个版本,分别针对不同评估方面。SEED-Bench为研究人员提供了一个客观比较多模态大语言模型性能的工具。
GIST-Embedding-v0 - 高性能句子嵌入模型支持多种自然语言处理任务
GithubHuggingfacesentence-transformers分类任务句子相似度开源项目检索任务模型特征提取
GIST-Embedding-v0是一个句子嵌入模型,适用于多种自然语言处理任务。该模型在MTEB基准测试中展现出良好性能,特别是在英语文本处理方面。它支持分类、检索和聚类等应用,为开发者提供了一个灵活的文本表示解决方案。
llm_benchmarks - 大语言模型评估基准集合
GithubLLM人工智能开源项目机器学习自然语言处理语言理解
llm_benchmarks是一个全面的大语言模型评估基准集合,涵盖知识理解、推理能力、多轮对话和内容摘要等方面。该项目包含MMLU、ARC、GLUE等知名数据集,用于测试模型在不同任务中的表现。这一标准化工具为评估大语言模型性能提供了可靠依据,有助于相关技术的发展与应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号