Project Icon

Bio_Discharge_Summary_BERT

改进电子健康记录分析的Bio_Discharge_Summary_BERT模型

Bio_Discharge_Summary_BERT模型基于BioBERT进行初始化,专注于分析MIMIC III数据库的出院小结文本。经过专业的数据预处理和基于Google BERT的训练,该模型在医疗文本处理任务中展现出优异表现,可以通过transformers库加载,用于医疗研究和实际应用。

compact-biobert - 压缩优化的生物医学BERT模型
CompactBioBERTGithubHuggingface开源项目模型模型蒸馏深度学习生物医学自然语言处理
CompactBioBERT是BioBERT的压缩版本,通过结合DistilBioBERT和TinyBioBERT的蒸馏技术,在PubMed数据集上训练而成。该模型采用6层transformer结构,隐藏层和嵌入层维度为768,总参数约6500万。CompactBioBERT在保持生物医学自然语言处理性能的同时,有效缩小了模型规模,提升了计算效率。
BiomedVLP-CXR-BERT-specialized - 胸部X光领域专用语言模型 优化生物医学视觉语言处理
CXR-BERTGithubHuggingface医疗影像多模态学习开源项目模型胸部X光自然语言处理
BiomedVLP-CXR-BERT-specialized是专为胸部X光领域开发的语言模型。通过优化词汇表、创新预训练方法、权重正则化和文本增强技术,该模型在放射学自然语言推理和掩码语言模型预测等任务中表现优异。它还能应用于零样本短语定位和图像分类等视觉-语言处理任务。此外,该模型与ResNet-50图像模型联合训练,可用于短语定位。作为生物医学视觉-语言处理研究的重要工具,BiomedVLP-CXR-BERT-specialized为相关领域提供了新的可能性。
deid_roberta_i2b2 - RoBERTa模型用于医疗记录去标识化
GithubHIPAAHuggingfaceI2B2RoBERTa医疗记录去标识化开源项目模型自然语言处理
这是一个基于RoBERTa的序列标注模型,专门用于医疗记录去标识化。模型能识别11种受保护健康信息类型,采用BILOU标记方案。在I2B2 2014数据集上训练后,可自动从医疗记录中移除敏感信息。项目提供了使用说明、数据格式要求和示例代码,便于快速应用。
biomed_roberta_base - RoBERTa衍生模型在生物医学NLP任务中展现优异性能
GithubHuggingfaceRoBERTa开源项目模型生物医学自然语言处理语言模型预训练
BioMed-RoBERTa-base是一个针对生物医学领域优化的语言模型,基于RoBERTa-base架构,通过对268万篇科学论文全文的持续预训练而成。该模型在文本分类、关系提取和命名实体识别等多项生物医学NLP任务中表现出色,比基础RoBERTa模型有显著提升。这为生物医学领域的自然语言处理研究提供了一个强大的预训练工具。
SapBERT-from-PubMedBERT-fulltext-mean-token - 生物医学实体表示自对齐预训练模型
GithubHuggingfaceSapBERT实体表示开源项目模型生物医学自然语言处理语义关系
SapBERT是基于PubMedBERT开发的生物医学预训练模型,采用自对齐技术优化实体语义表示。该模型在医学实体链接任务中表现卓越,创下多项基准测试新纪录。它能有效捕捉精细语义关系,为实体链接等任务提供强大支持。研究人员可通过简单的代码实现实体嵌入提取,便于进行生物医学文本分析。
S-PubMedBert-MS-MARCO - 医疗文本信息检索专用BERT模型
GithubHuggingfaceMS-MARCOPubMedBERTsentence-transformers医疗文本处理开源项目模型语义搜索
S-PubMedBert-MS-MARCO是一个针对医疗和健康文本领域优化的信息检索模型。它基于PubMedBERT,并通过MS-MARCO数据集微调,可将文本映射为768维向量。该模型适用于语义搜索和文本聚类,支持Sentence-Transformers和HuggingFace Transformers框架,为医疗文本分析提供了有效工具。
pubmedbert-base-embeddings - 专为医学文献优化的嵌入模型 支持语义搜索和RAG应用
GithubHuggingfacePubMedBERT医学文献嵌入向量开源项目模型自然语言处理语义搜索
PubMedBERT Embeddings是一个专门针对医学文献优化的嵌入模型。它基于PubMedBERT进行微调,将句子和段落映射到768维向量空间。该模型在PubMed标题-摘要对上训练,相比通用模型能为医学文献生成更高质量的嵌入向量。它支持聚类、语义搜索等应用,可通过txtai、Sentence-Transformers或Hugging Face Transformers等框架轻松集成。在多个PubMed相关评估数据集上,该模型展现出优秀的性能表现。
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 - 基于PubMedBERT的生物医学视觉语言基础模型
BiomedCLIPGithubHuggingfacePubMedBERT图像分类开源项目模型生物医学视觉语言处理
BiomedCLIP是一个生物医学视觉语言基础模型,集成了PubMedBERT和Vision Transformer技术。该模型通过1500万医学图像-文本对的预训练,能够执行跨模态检索和图像分类等任务。在多个标准数据集上,BiomedCLIP显著提升了性能基准。这一模型为生物医学视觉语言处理研究奠定了坚实基础,在放射学等领域具有广泛应用前景。
PharmBERT-uncased - 药品标签处理的BERT模型
BERT模型GithubHuggingfacePharmBERT开源项目模型药品标签预训练领域专用模型
PharmBERT 是一个专用于药品标签的 BERT 模型,通过领域相关的预训练和微调技术,提高药品信息的提取和处理能力。适合制药和生命科学领域的专业人员使用,PharmBERT 可以有效解析药品文档,提升研发效率。有关更多信息和技术细节,请访问 PharmBERT 的 GitHub 页面。
BioBERT-mnli-snli-scinli-scitail-mednli-stsb - 基于BioBERT的多领域句子嵌入模型
BioBERTGithubHuggingfacesentence-transformers嵌入向量开源项目模型自然语言处理语义相似度
该项目是一个基于BioBERT的句子嵌入模型,通过多个领域数据集训练而成。模型能将文本映射至768维向量空间,适用于聚类和语义搜索等任务。它不仅在生物医学领域表现出色,还可应用于其他文本分析场景。模型支持sentence-transformers和HuggingFace Transformers两种调用方式,为用户提供了便捷的使用体验。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号