Project Icon

rag-token-base

基于检索增强生成的知识型自然语言处理模型

RAG-Token-Base是一个开源的自然语言处理模型,集成了问题编码器、检索器和生成器三个核心组件。模型采用DPR编码器和BART生成器架构,通过结合外部知识实现高质量的文本生成。其灵活的检索器配置功能使其适用于各类知识密集型的语言处理任务。

rag-token-nq - RAG技术驱动的智能问答生成模型
GithubHuggingfaceRAGtransformer开源项目模型知识检索自然语言处理问答系统
RAG-token-nq是一个结合DPR和BART技术的智能问答模型,通过检索wiki_dpr数据集实现知识增强。模型包含问题编码器、检索器和生成器,能够针对事实性问题生成准确答案。基于uncased处理机制,该模型在知识密集型自然语言处理任务中表现优异。
rag-sequence-nq - RAG序列模型:知识密集型NLP任务的检索增强生成方案
GithubHuggingfaceRAGfacebook开源项目检索增强生成模型自然语言处理问答系统
RAG-Sequence模型是基于《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》论文研发的开源项目。该模型集成了问题编码器、检索器和生成器,可从wiki_dpr数据集提取相关段落并生成答案。经过wiki_dpr问答数据集的端到端微调,这个不区分大小写的模型能够处理各类事实性问题。开发者可通过Hugging Face的transformers库轻松应用此模型,为知识密集型NLP任务提供高效解决方案。
rag - 高效检索增强生成系统RAG实现
GithubLLMRAGtxtai向量搜索图搜索开源项目
RAG with txtai项目实现了一个基于Streamlit的检索增强生成应用。系统集成了向量RAG和图RAG两种方法,通过控制语言模型的上下文来增强回答的准确性。项目支持Docker容器和Python虚拟环境部署,可灵活添加自定义数据并通过环境变量配置模型参数。这一versatile的RAG系统适用于广泛的知识检索和智能问答应用场景。
RAG - 优化检索增强生成技术的最佳实践探索
GithubRAGGA开源项目最佳实践检索增强生成深度学习论文实现
RAGGA是一个实现检索增强生成(RAG)技术最佳实践的开源项目。基于论文研究,项目提供RAG系统性能优化方法和策略,包含代码实现和复现指南。RAGGA通过实验验证了多种RAG技术优化策略,包括检索方法改进、上下文融合等。这些发现对于提升自然语言处理任务的性能具有重要意义,为RAG技术研究和应用提供了重要参考资源。
LongRAG - 改进长文本LLM的检索增强生成框架
GithubLongRAGTevatronWikipedia数据开源项目检索增强生成长上下文LLM
LongRAG项目推出新型检索增强生成框架,采用4K token长检索单元提升RAG性能。项目核心包括长检索器和长阅读器,平衡检索与阅读任务复杂度。除提供完整代码实现,还开放处理后的语料库数据集。这为研究长文本LLM与RAG结合提供了重要资源,有助于探索该领域的未来发展方向。
RAG-Survey - AI内容生成中的增强检索方法全面指南
AI生成内容GithubRAGRetrieval-Augmented Generation大型语言模型开源项目知识增强
深入探索增强检索技术如何推动AI内容生成的进步。RAG-Survey项目综合最新研究,涵盖查询基准、潜在表达式和逻辑基础RAG等多种方法,持续更新其调研报告和文献库。项目专注于提升检索增强生成模型,精准高效地应用于开放域问答、代码生成等多个AI领域。
RAG-Survey - RAG技术全面综述 基础方法、增强技术及未来方向
GithubRAG人工智能大语言模型开源项目检索增强生成自然语言处理
该研究对检索增强生成(RAG)技术进行了系统性调查和分类。文章全面总结了RAG的基础方法,包括基于查询、潜在表示和logit的技术,以及新兴的推测性RAG。同时深入探讨了RAG的多种增强策略,涵盖输入优化、检索器改进和生成器增强等关键方面。这份综述为AI领域的研究人员和开发者提供了RAG技术的最新进展概览,有助于把握未来研究方向。
RAG_Techniques - 先进RAG技术集合优化检索增强生成系统
GithubRAG信息检索开源项目机器学习检索增强生成自然语言处理
本项目汇集22种先进RAG技术,涵盖简单RAG到复杂可控代理等多种方法,包括上下文丰富、多方面过滤、融合检索和智能重排序等。这些技术旨在提高检索增强生成系统的准确性、效率和上下文丰富度,为研究人员和实践者提供全面实施指南,助力开发更高效RAG系统。
GNN-RAG - 结合图神经网络和检索增强生成的知识图谱问答方法
GNN-RAGGithub图神经网络大语言模型开源项目检索增强生成知识图谱问答
GNN-RAG项目探索了图神经网络在大语言模型推理中的应用。该方法在密集子图上进行推理,检索候选答案和推理路径,结合了GNN的结构化推理和LLM的自然语言处理能力。项目提供了GNN实现和基于RAG的LLM问答系统的代码,以及实验结果。研究表明,这种方法在知识图谱问答任务中具有提升性能的潜力。
Advanced_RAG - 深入探索RAG和Langchain框架在语言理解中的应用
Advanced_RAGGithubLLMsLangchainMulti Query RetrieverSelf-Reflection-RAG开源项目
该项目通过Python笔记本展示了RAG的高级技术,旨在优化大型语言模型(LLMs)的知识丰富度和上下文感知能力。从基础流程到多查询检索、自我反思、和自适应代理等高级架构,全面覆盖了核心组件及其工作方式。项目提供了构建RAG应用的详细指南,展示了如何通过Langchain框架提升文本生成的准确性和信息丰富度。内容包括查询转换、数据源路由和向量数据库索引等关键技术,为LLM应用提供坚实支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号