Project Icon

sam2.1-hiera-large

Meta开源的新一代图像视频智能分割模型

sam2.1-hiera-large是Meta AI推出的SAM 2项目的核心模型,专注于图像和视频的智能分割任务。模型支持图像和视频预测功能,可通过Python接口快速集成。基于提示式交互,模型能实现自动生成分割掩码,在需要精确物体分割的计算机视觉应用中具有广泛应用价值。

mask2former-swin-large-coco-instance - 使用Swin骨干的高效图像分割Transformer模型
COCOGithubHuggingfaceMask2Former图像分割实例分割开源项目模型语义分割
Mask2Former在COCO数据集上的实例分割中表现出色,采用Swin骨干网,通过掩码预测和标签分类统一处理多种分割任务。相比MaskFormer,其改进的多尺度变形注意力机制提升了性能,并且不增加计算量的情况下优化了训练效率。此模型可以用于实例分割,提供多种微调版本供不同需求使用。
LISA - 通过大型语言模型进行推理分割的技术
GithubLISA分割掩码多模态大语言模型开源项目推理分割
LISA凭借其多模态大型语言模型,开创推理分割任务,能够将复杂文本问题转化为精准的图像分割结果。该项目不仅包含超千个图像指令对、综合推理及世界知识评估,还展示出在无需推理的数据集训练下的强大零样本能力。推理训练图片指令对的引入进一步强化了其性能。详情请参阅相关论文。
Depth-Anything-V2-Small - 先进高效的开源深度估计工具
Depth-Anything-V2GithubHuggingface图像处理开源项目机器学习模型深度估计计算机视觉
Depth-Anything-V2-Small是一个开源的单目深度估计模型,基于大规模合成和真实图像数据训练。相比前代产品,该模型提供更精细的深度细节和更强的鲁棒性。它比同类基于稳定扩散的模型运行速度快10倍,且更加轻量化。模型支持高效的图像深度推断,可用于各种计算机视觉应用场景。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
Llama-2-13b-hf - Meta开源130亿参数大语言模型 超强功能与安全性并存
GithubHuggingfaceLlama 2人工智能大语言模型开源项目机器学习模型自然语言处理
这是Meta开发的开源预训练语言模型,采用优化的Transformer架构,具有130亿参数。该模型支持4k上下文长度,经2万亿token训练,在多项基准测试中表现优异。模型可用于对话及各类自然语言生成任务,适合商业和研究用途。训练数据来自公开数据集,并通过人类反馈强化学习提升了模型性能和安全性。
InternVL2-1B - 多模态大语言模型实现多图像和视频智能理解
GithubHuggingfaceInternVL2人工智能多模态大语言模型开源项目模型自然语言处理计算机视觉
InternVL2-1B是一款新型多模态大语言模型,结合了InternViT-300M-448px视觉模型和Qwen2-0.5B-Instruct语言模型。该模型在文档理解、图表分析和场景文字识别等任务中表现优异,能有效处理长文本、多图像和视频输入。InternVL2-1B在开源多模态模型中表现突出,部分能力可与商业模型比肩。通过采用8k上下文窗口训练,该模型大幅提升了处理长输入序列的能力。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
bart-large-cnn-samsum - BART模型在SageMaker上优化的对话摘要解决方案
Amazon SageMakerBARTGithubHuggingface对话摘要开源项目模型模型训练自然语言处理
bart-large-cnn-samsum是一个基于BART架构的对话摘要模型,通过Amazon SageMaker和Hugging Face深度学习容器训练而成。该模型在SAMSum数据集上进行微调,专注于生成高质量的对话摘要。在ROUGE评分方面表现优异,为开发者提供了强大的对话摘要工具。模型可通过简洁的Python代码轻松集成,适用于需要快速、准确提取对话要点的应用场景。
ComfyUI-YoloWorld-EfficientSAM - YOLO-World + EfficientSAM for ComfyUI 的非官方实现,提供高效的对象检测与实例分割功能
ComfyUIEfficientSAMGithubYOLO-World实例分割对象检测开源项目
该项目非官方实现了YOLO-World和EfficientSAM,通过融合这两个模型,提供高效的对象检测与实例分割功能。版本V2.0新增了蒙版分离与提取功能,支持指定蒙版单独输出,可处理图像和视频。项目特点包括支持加载多种YOLO-World和EfficientSAM模型,提供检测框厚度、置信度阈值、IoU阈值等配置选项,以提升检测与分割的精准性。详细的视频演示和安装指南,使用户能够轻松上手,体验高效的图像处理能力。
mask2former-swin-tiny-coco-instance - Mask2Former模型:统一处理实例、语义和全景图像分割
GithubHuggingfaceMask2Former图像分割实例分割开源项目模型深度学习计算机视觉
Mask2Former是一个先进的图像分割模型,基于Swin骨干网络在COCO数据集上训练。它采用统一的方法处理实例、语义和全景分割任务,通过预测掩码和标签来完成分割。该模型引入多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率上超越了先前的MaskFormer模型。Mask2Former提供了简单的使用方法和代码示例,方便研究人员和开发者在图像分割领域进行应用和研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号