Project Icon

SIGIR2020_peterrec

基于序列行为的参数高效迁移学习推荐方法

SIGIR2020_PeterRec提出了一种基于用户序列行为的参数高效迁移学习方法,用于改进推荐系统性能。该方法在冷启动等场景中表现出色。项目提供了多个大规模数据集,用于评估各类推荐模型,包括基础模型、可迁移模型、多模态模型和大语言模型。项目还包含PyTorch代码实现和详细的使用说明。

RAG-Retrieval - 使用RAG-Retrieval全面提升信息检索效率与精度
GithubRAG-Retrieval开源项目微调排序模型推理检索模型
RAG-Retrieval项目通过统一方式调用不同RAG排序模型,支持全链路微调与推理。其轻量级Python库扩展性强,适应多种应用场景,提升排序效率。更新内容包括基于LLM监督的微调及其Embedding模型的MRL loss性能提升。
HugeCTR - GPU加速的大规模深度学习推荐系统框架
GPU加速GithubHugeCTR嵌入开源项目推荐系统深度学习
HugeCTR是专为大规模深度学习模型设计的GPU加速推荐系统框架,支持高效训练和推理。框架在MLPerf等基准测试中性能卓越,提供直观的API接口,并具备大规模嵌入等核心功能。HugeCTR实现了模型并行训练、混合精度计算、嵌入缓存等先进特性,可高效部署超大规模嵌入的推荐模型。
Algorithm-Practice-in-Industry - 搜索推荐广告算法实践与前沿技术资源汇总
GitHubGithub开源项目搜索推荐算法实践论文推送顶会论文
本项目汇集搜索、推荐、广告等领域的算法实践文章和前沿技术。包含顶会论文列表、优质博主文章和算法系列串讲。通过自动更新机制提供最新论文资讯,支持中英双语推送。为算法从业者提供全面的学习和参考资源。
P-tuning-v2 - 深度提示调优技术提升小型模型性能 媲美传统微调方法
GithubP-tuning v2参数效率开源项目提示调优深度学习自然语言处理
P-tuning v2是一种创新的提示调优策略,通过深度提示调优技术为预训练Transformer的每层输入应用连续提示。这种方法显著提升了连续提示的容量,有效缩小了与传统微调方法的性能差距,尤其在小型模型和复杂任务中表现突出。研究表明,P-tuning v2在BERT和RoBERTa等模型上取得了优异成果,在多项NLP任务中达到了与微调相当的水平,为发展参数高效的模型调优技术开辟了新途径。
Transfer-Learning-Library - 高效且易用的迁移学习库,支持多种算法和任务
APIGithubPyTorchTLlibTransfer Learning开源项目机器学习
Transfer Learning Library (TLlib) 是一个开源的迁移学习库,基于PyTorch设计,具备高性能和易用性。该库支持多种方法,如域对齐、域转换和半监督学习,适用于分类、回归、目标检测、分割和关键点检测等任务。提供丰富的示例代码和详细文档,并支持pip安装。这是研发新算法或应用现有算法的理想工具,适用于研究和工程实践。
mlgb - 多模型支持的CTR预测和推荐系统库
CTR预测GithubMLGB开源项目推荐系统机器学习深度学习模型
MLGB是一个Python库,集成了50多种CTR预测和推荐系统模型,兼容TensorFlow和PyTorch框架。该库提供简洁的API,方便快速调用复杂模型。通过代码优化,MLGB实现了高效性能,为研究和工程实践提供了多样化的模型选择。
UnsupervisedScalableRepresentationLearningTimeSeries - 多变量时间序列的无监督可扩展表示学习方法
GithubPyTorchUCR数据集UEA数据集开源项目无监督学习时间序列表示学习
UnsupervisedScalableRepresentationLearningTimeSeries项目提出了一种无监督可扩展表示学习方法,专门用于处理多变量时间序列数据。该方法基于三元组损失训练编码器,能够处理等长或不等长时间序列。项目提供了UCR和UEA数据集实验代码,包括迁移学习和稀疏标记实验。此外,还包含预训练模型和结果可视化工具。在多个基准数据集上,该方法展现出优秀的性能,为时间序列分析领域提供了创新解决方案。
metarank - 实时个性化搜索和推荐服务,优化CTR和用户体验
GithubMetarank个性化开源开源项目排序服务推荐系统
Metarank是一个开源排名服务,帮助构建个性化的语义/神经搜索和推荐系统。通过整合点击和购买等客户信号,该服务可以优化搜索结果和推荐内容,实现最大化CTR。其快速性能支持大规模结果集的重新排序,并提供开箱即用的排名信号计算,节省开发时间。与多种流处理系统集成,Metarank能处理大量RPS,支持横向扩展。另外,用户可以使用LLM,在搜索查询中理解其真实含义,提供更智能的搜索解决方案。
Informer2020 - 长序列时间序列预测的高效解决方案
ETT数据集GithubInformerProbSparse Attention开源项目时间序列预测高效Transformer
Informer引入ProbSparse注意机制,大幅提升长序列时间序列预测的效率和精度。该模型利用概率分布选择活跃查询,避免冗余计算,适用于多种数据集,并在AIJ和AAAI'21获奖。提供详细的实验设置、Colab示例和数据下载链接,帮助用户快速上手并复现结果。
Awesome_Matching_Pretraining_Transfering - 多模态模型、参数高效微调及视觉语言预训练研究进展汇总
Github参数高效微调图像文本匹配多模态模型大型模型开源项目视觉语言预训练
该项目汇总了多模态模型、参数高效微调、视觉语言预训练和图像-文本匹配领域的研究进展。内容涵盖大语言模型、视频多模态模型等多个方向,定期更新最新论文和资源。项目为相关领域的研究人员和开发者提供了系统的学习参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号