Project Icon

Bert-VITS2

多语言BERT驱动的语音合成模型

Bert-VITS2项目融合了多语言BERT和先进的自回归TTS模型,提供高品质的语音合成。此项目参考了MassTTS等开源项目,并推荐使用Fish-Speech。详情和演示请参见视频链接和文档,项目强调中文用户需求和法律合规,禁止违规用途。

vits_chinese - 基于BERT和VITS技术的文本到语音合成系统
BERTGithubTTSVITS开源项目文本到语音自然语言处理
vits_chinese项目引入了BERT和VITS技术,通过隐藏的韵律嵌入和自然语言特性,显著提高了文本到语音合成的音质和自然度。此项目不只适于高质量音频生成,也提供模块化蒸馏加速和在线演示,便利学习和开发人员的应用。
fish-speech - 全新的TTS解决方案
Fish AudioGithub在线演示开源开源项目本地推断热门语音合成
Fish Speech项目是一个基于最新语音合成模型的平台,提供包括VITS2、Bert-VITS2在内的多种模型。项目代码遵循CC-BY-NC-SA-4.0许可发布,且拥有多种语言文档支持和实用的在线演示。该平台适用于学术研究和开发使用,旨在推动语音合成技术的发展并提供高质量的语音生成服务。
Bert-VITS2-ext - 实现声音到脸部表情的同步生成的TTS及声音识别的应用
Bert-VITS2GithubTTS开源项目数据预处理表情生成音频质量
Bert-VITS2-ext 专注于TTS及声音识别的创新应用,实现声音到脸部表情的同步生成。该技术结合VITS,支持多语言,适用于复杂交互场景,为动画与虚拟互动领域开辟新可能。
vits2_pytorch - 单阶段文本到语音转换的效率与质量提升
GithubVITS2单阶段模型对抗学习开源项目文本转语音架构设计
VITS2_pytorch是一款先进的单阶段文本到语音转换模型,采用对抗学习和架构设计改进前代产品。这一最新的非官方实现版本,旨在通过增强模型结构和训练机制,有效提升语音自然度和特征相似性,同时显著降低对音素转换的依赖,从而提高训练和推断的效率。该项目还为专业人士提供了预训练模型和多种语言的样本音频,支持开箱即用的转换学习。
VITS-fast-fine-tuning - 个性化多语言语音合成与转换工具
GithubVITS声音转换多语言开源项目文本转语音语音克隆
VITS-fast-fine-tuning是一个开源的语音合成项目,旨在快速实现个性化的多语言文本转语音和声音转换功能。该工具支持中英日三语合成,允许用户添加自定义声音,并实现角色间的声音转换。项目提供本地训练和Google Colab两种方式,适应不同用户需求。此外,它能从多种音频源(如短音频、长音频、视频和B站链接)克隆声音,为用户提供灵活的声音定制选项。VITS-fast-fine-tuning的微调过程通常只需1小时左右,大大提高了个性化语音模型的开发效率。
vits2 - 单阶段文本转语音系统的效率与质量提升
GithubSK TelecomVITS2单阶段模型开源项目文本到语音自然语言处理
VITS2项目融合了对抗学习与结构设计,在单阶段文本转语音技术上实现了显著的质量与效率提升。此模型通过结构和训练机制的优化,增强了语音的自然感和多讲者语音特征的匹配度,并提高了训练及推理速度。VITS2的创新技术显著降低了对音素转换的依赖,支持了完整的端到端处理。
vits - 基于变分自编码器和对抗学习的端到端TTS系统
GithubTTSVITS变分自编码器对抗学习开源项目语音合成
VITS是一种结合变分自编码器和对抗学习的端到端TTS系统,能够提升语音合成的自然度。通过变分推理和正态化流,以及随机时长预测器,VITS实现了多样节奏的语音合成。实验结果表明,该方法在LJ Speech数据集上的表现优于现有的TTS系统,接近真实语音的水平。
ttts - 创新多语言语音合成技术的突破性进展
AI模型GithubTTSVQVAE声音合成多语言支持开源项目
TTTS_v4是一个开源的多语言语音合成项目,通过创新的'细节'建模方法改进了传统VQ技术。该项目现已支持中文、英文、日语和韩语,并具有扩展性。TTTS_v4整合了tokenizer训练、VQVAE训练和GPT语音合成技术,旨在生成高质量的自然语音。此外,项目还提供模型微调功能,适用于多种语言场景和个性化需求。
PL-BERT - 通过PL-BERT实现更自然的语音合成
GithubPL-BERT图标预测开源项目文本转语音自然语言模型语音合成
PL-BERT,一种创新的音素级预训练语言模型,通过预测掩码音素对应的字形,有效提升了多语种文本到语音转换的自然度和准确性。经科学评估,其合成语音质量在面对非模型文本时,较传统方法有明显提高,推动了语音合成技术的进步。
Bridge-TTS - 创新方法提升文本转语音合成效果
Bridge-TTSGithubSchrodinger Bridge开源项目文本转语音机器学习语音合成
Bridge-TTS是一个革新性的文本转语音(TTS)项目,利用人工智能和机器学习技术,通过创新的数据处理方法优化语音合成。无论在简单还是复杂的应用场景中,它都显著优于传统的扩散模型。这一突破不仅提升了TTS技术水平,还为语音合成和相关人工智能领域开辟了新的研究方向。项目详情、研究方法和结果可在官方网站查阅,完整源代码将在论文被学术界正式接受后公开发布。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号