Project Icon

loft

探索百万级token长文本处理的前沿基准

LOFT是一个长文本处理基准,包含6类30多个数据集,涵盖检索、多跳推理等任务。该项目提供多模态数据、评估代码和数据集重生成工具,旨在测试大规模语言模型的长文本处理能力。LOFT为研究人员提供了标准化平台,用于全面评估长文本语言模型性能,有助于推动自然语言处理技术发展。

delft - 基于Keras和TensorFlow的深度学习文本处理框架
DeLFTGithubKerasTensorFlow开源项目文本处理深度学习
DeLFT是一个Keras和TensorFlow框架,专为序列标注(如命名实体识别、信息提取)和文本分类(如评论分类)优化。它重新实现了许多前沿深度学习模型,支持处理富文本格式和多种现代NLP架构,旨在提供高效、可靠且可集成的生产级应用。该框架包括各种分类器和评估标准,并支持多GPU训练和推理。
LLMBox - 全面的大型语言模型训练与评估框架
GithubLLMBox大语言模型开源项目模型评估训练管道高效推理
LLMBox是一个综合性大型语言模型(LLM)库,集成了统一的训练流程和全面的模型评估功能。该框架旨在提供LLM训练和应用的完整解决方案,其设计注重实用性,在训练和使用过程中体现出高度的灵活性和效率。LLMBox支持多样化的训练策略和数据集,提供丰富的评估方法,并具备高效的推理和量化能力,为LLM的研究和开发提供了强大支持。
BIG-bench - 评估大型语言模型能力的开放基准
BIG-benchGithub任务创建基准测试开源项目模型评估语言模型
BIG-bench是一个开放的基准测试项目,致力于评估大型语言模型的能力并预测其未来发展。该项目包含200多个多样化任务,涉及算术、推理等多个领域。研究人员可通过JSON或编程方式贡献新任务,并利用公开模型进行评估。BIG-bench Lite作为24个精选任务的子集,提供了高效的模型性能评估方法。这一平台为深入研究语言模型能力提供了宝贵资源。
LongQLoRA - 大语言模型上下文长度高效扩展的创新方法
GithubLongQLoRA上下文长度扩展低资源训练大语言模型开源项目性能评估
LongQLoRA是一种扩展大语言模型上下文长度的方法,可在单个32GB V100 GPU上将LLaMA2模型的上下文长度从4096扩展到8192。该方法在PG19和Proof-pile数据集上表现优异,仅需1000步微调即可达到接近MPT-7B-8K的性能。项目还提供了预训练数据集、指令微调数据集以及扩展上下文长度的模型。
long-form-factuality - 大型语言模型长篇文本事实性评估工具集
F1@KGithubLongFactSAFE大语言模型开源项目长篇事实性
Long-form-factuality项目提供了一套完整的工具和方法来评估大型语言模型生成长篇文本的事实准确性。项目包括LongFact提示集、SAFE评估器和F1@K指标。研究人员可以利用这些工具对OpenAI和Anthropic等模型进行基准测试,深入探究语言模型在长篇事实性文本生成方面的表现。项目代码开源,便于复现实验结果和进行further研究。
internlm2-7b - 增强自然语言处理与长文本分析能力
GithubHuggingfaceInternLM开源开源项目性能评测模型长上下文
InternLM2-7B是一款开源自然语言处理模型,以其卓越的语言能力及对20万字符长文本的支持在评测中表现优异。适用于领域适配与复杂任务,提供代码开放与商用使用许可,便于研究与开发者的灵活使用与集成。
LongRoPE - 扩展大语言模型上下文窗口至200万以上标记的方法
GithubLongRoPETransformer上下文窗口位置编码大语言模型开源项目
LongRoPE项目提出了一种将大语言模型(LLM)上下文窗口扩展至超过200万个标记的方法。通过利用位置嵌入中的非均匀性,项目实现了8倍的上下文窗口扩展,无需微调。采用逐步扩展策略从256k微调至2048k上下文,避免了对超长文本的直接微调。LongRoPE还调整了原始窗口长度内的嵌入,确保在各种任务中保持高效表现,适用于对话、问答、长文档摘要及少样本学习。
OLMo-7B-0724-hf - OLMo开放式语言模型促进语言处理技术进步
AI2GithubHuggingfaceOLMo变形金刚开源语言模型开源项目模型自然语言处理
OLMo是由AI2开发的开源语言模型系列,旨在推动语言模型科学研究。该模型基于Dolma数据集训练,采用先进的Transformer结构,实现性能提升和多阶段优化。OLMo-7B-0724-hf具备强大的文本生成能力,适用于文本推理和生成任务。支持在HuggingFace平台上进行加载、微调和评估,且提供多种数据检查点,方便研究与开发。该项目得到多家机构支持,并在多个主要AI任务中表现优异。
dclm - 大型语言模型训练与评估的开源综合框架
DataComp-LMGithub大语言模型开源项目数据处理模型训练评估
DataComp-LM是一个开源的大型语言模型训练和评估框架。它提供了超过300T的CommonCrawl标准语料库、基于open_lm的预训练方案和50多项评估指标。研究人员可利用该框架在411M至7B参数规模下进行数据集构建实验。通过数据集优化,DataComp-LM已显著提升了模型性能,创建了多个跨规模表现优异的高质量数据集。
yet-another-applied-llm-benchmark - 基于真实场景的大语言模型能力评估基准
API密钥Docker容器GithubLLM基准测试开源项目数据流DSL模型评估
yet-another-applied-llm-benchmark是一个评估大语言模型在实际应用场景中表现的基准测试项目。该项目包含近100个源自真实使用情况的测试案例,涵盖代码转换、反编译、SQL生成等多种任务。通过简单的数据流DSL设计测试,项目提供了一个灵活的框架来评估大语言模型的实际能力。这个基准虽不是严格的学术标准,但为开发者提供了衡量大语言模型在日常编程任务中表现的实用方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号