Project Icon

synjax

基于JAX的结构化概率分布神经网络库

SynJax是一个基于JAX的神经网络库,专注于结构化概率分布处理。它支持多种分布类型,包括线性链CRF、半马尔可夫CRF和成分树CRF等。该库提供计算对数概率、边际概率和最可能结构等标准操作,并兼容JAX的主要转换功能。SynJax采用纯Python编写,结合JAX的C++代码,为结构化概率建模提供了高效灵活的解决方案。

node-mlx - 基于MLX的高效Node.js机器学习开发工具
GPU支持GithubJavaScriptMLXnode-mlx开源项目机器学习框架
node-mlx是基于MLX的Node.js机器学习框架,支持Apple Silicon GPU加速及x64 Mac和Linux平台。该框架提供丰富的API和示例,涵盖语言模型训练和文本生成等应用。node-mlx通过简化复杂的机器学习任务,使JavaScript开发者能够更便捷地构建和部署AI模型。
sparsezoo - 高效稀疏神经网络模型库
GithubNeuralmagicSparseZoo开源项目模型库深度学习稀疏化模型
SparseZoo是一个不断扩展的神经网络模型库,包含高度稀疏和稀疏量化模型,以及相应的稀疏化配方。它简化并加速深度学习模型的开发,帮助实现高效推理。用户可以通过API或云端访问这些模型及其配方,并进行迁移学习或配方迁移。SparseZoo支持多种稀疏化算法和不同推理性能的模型,并提供全面的文档和社区支持。
juice - 综合机器学习框架集合 为开发者提供全面解决方案
CUDAGithubJuiceOpenCLRust开源项目机器学习
Juice项目是一个综合性机器学习框架集合,包含juice主框架、coaster数学库、coaster-nn和coaster-blas组件、greenglas数据预处理框架及示例集。该项目提供完整的机器学习工具链,支持CUDA和OpenCL后端,并配备CLI工具运行示例。Juice旨在为开发者提供高效、灵活的机器学习解决方案,涵盖从数据预处理到模型部署的全流程。
MarkovJunior - 基于重写规则的概率编程语言
GithubMarkovJunior开源项目推理概率编程算法重写规则
MarkovJunior结合了马尔可夫算法和重写规则,创造了一种新型概率编程语言。它能够通过简单规则生成复杂模型,在迷宫生成、建筑设计和谜题创作等领域表现出色。该项目支持多维操作,采用XML语法,并融合了约束传播推理,为程序化内容生成提供了强大的工具。
Jamba - 支持多层次深度学习的PyTorch语言模型
GithubJambaPyTorchTransformer开源项目神经网络语言模型
Jamba是一个基于PyTorch的混合语言模型,结合了Transformer和Mamba架构。通过简单的pip命令(`pip install jamba`),用户可以迅速安装并使用该模型。Jamba支持多种深度学习配置,包括输入数据维度、模型层数、唯一标记数、隐藏状态维度、卷积层维度、注意力头数量和专家网络配置,适用于各种自然语言处理任务。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
fann - 高性能开源神经网络库
FANNGithub开源库开源项目机器学习神经网络跨平台
FANN是一个用C语言实现的开源神经网络库,支持多层网络结构和多种连接方式。它具备跨平台兼容性、高性能计算能力和易用性,提供丰富的训练算法和激活函数。该库支持15种以上编程语言绑定,附带完整文档和图形界面,适用于研究和商业开发。FANN让用户能够便捷地构建、训练和部署神经网络模型。作为一个广受欢迎的项目,FANN日均下载量约100次,支持RPROP和Quickprop等多种训练方法,实现了多种激活函数,并可在固定点和浮点数系统上运行。其执行速度比类似库快达150倍,同时保持了良好的灵活性。FANN持续维护,为人工智能研究和应用提供了可靠的基础设施。
pytorch-dnc - PyTorch实现的差分神经计算机及相关模型库
DNCGithubSAMSDNC开源项目神经网络记忆增强
这个PyTorch库实现了差分神经计算机(DNC)、稀疏访问存储器(SAM)和稀疏差分神经计算机(SDNC)等模型。它提供灵活API用于构建和训练这些神经网络,支持多层控制器、共享内存等配置。库中还包含复制和加法等基准任务,以及内存可视化功能,有助于开发和评估基于外部存储的神经网络模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号