Project Icon

synjax

基于JAX的结构化概率分布神经网络库

SynJax是一个基于JAX的神经网络库,专注于结构化概率分布处理。它支持多种分布类型,包括线性链CRF、半马尔可夫CRF和成分树CRF等。该库提供计算对数概率、边际概率和最可能结构等标准操作,并兼容JAX的主要转换功能。SynJax采用纯Python编写,结合JAX的C++代码,为结构化概率建模提供了高效灵活的解决方案。

penzai - 用于构建、编辑和可视化神经网络的 JAX 研究工具包
GithubJAXPenzai开源项目模型可视化深度学习神经网络
Penzai是一个基于JAX的库,专为通过函数式pytree数据结构编写模型而设计,并提供丰富的工具用于可视化、修改和分析。适用于反向工程、模型组件剥离、内部激活检查、模型手术和调试等领域。Penzai包括Treescope交互式Python打印工具、JAX树和数组操作工具、声明式神经网络库及常见Transformer架构的模块化实现。该库简化了模型处理过程,为研究神经网络的内部机制与训练动态提供了支持。
evosax - 基于JAX的高性能进化策略框架
GithubJAXevosax优化算法开源项目机器学习进化策略
evosax是基于JAX的进化策略框架,通过XLA编译和自动向量化/并行化技术实现大规模进化策略的高效计算。它支持CMA-ES、OpenAI-ES等多种经典和现代神经进化算法,采用ask-evaluate-tell API设计。evosax兼容JAX的jit、vmap和lax.scan,可扩展至不同硬件加速器。该框架为进化计算研究和应用提供了高性能、灵活的工具。
jaxlie - JAX Lie群库为计算机视觉和机器人应用提供刚体变换
GithubJAXLie群jaxlie开源项目机器人学计算机视觉
jaxlie是一个基于JAX的Lie群实现库,专注于计算机视觉和机器人应用中的刚体变换。它实现了SO2、SE2、SO3和SE3等常用Lie群,支持自动微分、优化和JAX函数变换。该库提供前向和反向模式AD、流形优化、广播和序列化等功能,为开发者提供刚体变换的高效工具。
gymnax - JAX驱动的高效强化学习环境集合
GithubJAXgymnax加速计算开源项目强化学习环境仿真
gymnax是基于JAX构建的强化学习环境库,充分利用JAX的即时编译和向量化功能,显著提升了传统gym API的性能。该库涵盖经典控制、bsuite和MinAtar等多种环境,支持精确控制环境参数。通过在加速器上并行处理环境和策略,gymnax实现了高效的强化学习实验,尤其适合大规模并行和元强化学习研究。
jumanji - JAX驱动的多样化强化学习环境套件 加速研究与应用
GithubJAXJumanji开源项目强化学习环境套件
Jumanji是一个基于JAX的强化学习环境套件,提供22个可扩展环境。通过硬件加速,它支持快速迭代和大规模实验。简洁API、丰富环境、主流框架兼容性和示例代码使强化学习研究更易开展,同时促进研究成果向工业应用转化。
diffrax - JAX 自动微分与 GPU 支持的数值微分方程解析工具
CDEDiffraxGithubJAXODESDE开源项目
Diffrax 是基于 JAX 的数值微分方程解析库,适用于常微分方程、随机微分方程和受控微分方程的求解。其特点包括多种解析器选择(如 Tsit5、Dopri8、辛解析器、隐式解析器)、使用 PyTree 作为状态存储、支持稠密解和多种反向传播方法,并支持神经微分方程。兼容 Python 3.9+、JAX 0.4.13+ 和 Equinox 0.10.11+。
learned_optimization - 基于JAX的元学习优化器研究框架
GithubJAXlearned_optimization优化器元学习开源项目机器学习
learned_optimization是一个研究代码库,主要用于学习型优化器的训练、设计、评估和应用。该项目实现了多种优化器和训练算法,包括手工设计的优化器、学习型优化器、元训练任务以及ES、PES和截断反向传播等外部训练方法。项目提供了详细的文档和教程,包括Colab笔记本,方便用户快速入门。learned_optimization适用于元学习和动态系统训练的研究,为相关领域提供了功能丰富的工具。
nanodl - 设计与训练变压器模型的Jax库
GithubJaxNanoDLtransformer模型分布式训练开源项目深度学习
这是一个基于Jax的库,旨在简化变压器模型的开发和训练,特别适合资源有限的环境。支持多种模型如Gemma、GPT3、T5和Whisper,涵盖自然语言处理和计算机视觉任务。提供灵活的模块和层,包括Jax/Flax中未提供的RoPE、GQA、MQA和Swin注意力机制,支持多GPU/TPU的数据并行训练,简化数据处理。该库还包含加速的经典机器学习模型,帮助用户以最小的代码重写快速实现模型开发和训练。
optax - JAX生态系统中的高效梯度处理与优化框架
GithubJAXOptax优化器开源项目梯度处理深度学习
Optax是JAX生态系统中的梯度处理和优化框架。它提供了经过严格测试的高效核心组件,支持研究人员灵活组合低级模块以构建自定义优化器。该库强调模块化设计,重视代码可读性和结构化,便于匹配标准优化方程。Optax实现了多种主流优化算法和损失函数,为机器学习研究和快速原型开发提供了有力支持。
jaxtyping - JAX数组与PyTrees的类型注解和运行时检查工具
GithubJAXPyTreejaxtyping开源项目类型注解运行时类型检查
jaxtyping是一款为JAX数组和PyTrees提供类型注解及运行时类型检查的开源工具。除JAX外,它还支持PyTorch、NumPy和TensorFlow等主流框架,使用户能够为数组的形状和数据类型添加精确的类型提示。该项目安装简便,与多种运行时类型检查包兼容,并提供完整的在线文档。通过增强类型安全,jaxtyping为科学计算和深度学习项目提供了更可靠的开发环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号