Project Icon

morph-net

在训练过程中优化深度网络结构的方法

MorphNet是一种在训练过程中优化深度网络结构的方法。通过使用正则化器优化FLOPs或模型大小等资源的消耗,MorphNet实现了受约束的网络结构优化。新方法FiGS采用概率性通道正则化,适用于剪枝和可微架构搜索。MorphNet可以在不改变网络拓扑的情况下调整卷积层的输出通道数,以简化模型并满足内存和延迟需求。项目由Elad Eban和Andrew Poon等人维护。

HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
MoRA - 大型语言模型的高效参数微调方法
GithubLoRAMoRA参数效率开源项目微调深度学习
MoRA是一种针对大型语言模型的参数高效微调技术,利用高阶低秩更新实现高效训练。该方法适用于数学推理、预训练等多种任务,并与LoRA等技术兼容。MoRA提供多种更新类型和目标模块配置,满足不同研究需求。项目包含实现指南和示例代码,便于快速应用。
LongNet - 扩展Transformer到10亿标记的创新变体
Dilated AttentionGithubLongNetTransformer开源项目机器学习长序列建模
LongNet是一个创新的Transformer变体,通过膨胀注意力机制扩展序列长度至超过10亿标记,同时保持对较短序列的高性能。该模型具有线性计算复杂度,适用于极长序列的分布式训练,并且其膨胀注意力可以无缝替代标准注意力。实验结果证明,LongNet在长序列建模和一般语言任务上表现出色,为处理整个语料库或互联网序列开辟了新路径。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
VanillaNet - 高效简约的深度学习神经网络架构
GithubVanillaNet开源项目模型效率深度学习神经网络计算机视觉
VanillaNet是一种创新的神经网络架构,专注于简洁性和效率。它摒弃了复杂的快捷连接和注意力机制,仅使用较少的层数就能保持出色的性能。该项目展示了精简架构也能实现有效结果,为计算机视觉领域开辟了新路径,挑战了基础模型的现状。与主流模型相比,VanillaNet在保持相当性能的同时,具有更少的层数和更快的推理速度。
Efficient-AI-Backbones - 领先的人工智能模型与技术 - Huawei Noah's Ark Lab 研发
AI模型GithubNeurIPSTransformer华为开源项目机器学习热门
Efficient-AI-Backbones 项目涵盖了由华为诺亚方舟实验室研发的一系列先进的人工智能模型,包括 GhostNet, TNT, AugViT, WaveMLP, 和 ViG 等。这些模型通过创新的结构设计和优化,有效提升了计算效率和性能,广泛应用于各种智能处理任务。最新发布的 ParameterNet 在 CVPR 2024 会议上被接受,展现了华为在人工智能技术领域的持续领先。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
ffn - 专为大脑组织体积EM数据集实例分割的神经网络
Flood-Filling NetworksGithubTensorFlow图像处理实例分割开源项目神经网络
Flood-Filling Networks (FFNs) 是一种专为复杂大型形状实例分割设计的神经网络模型,特别适用于大脑组织的体积电子显微镜数据集。FFN模型在处理大规模、高分辨率的神经影像数据时表现出色,能够准确识别和分割复杂的神经元结构。该开源项目在FIB-25数据集上展现了优秀性能,为神经科学研究提供了强大的分割工具,适合需要高精度神经元分割的研究人员使用。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
Morph - 基于AI的数据处理和分析协作平台
AI工具AI辅助Morph数据分析数据可视化数据处理
Morph是一个创新的AI数据协作平台,为组织提供智能化的数据处理和分析解决方案。该平台利用先进的AI技术,使用户能够轻松地从多个来源汇总数据、进行分析并导出至所需平台,无需编写代码。Morph整合了数据仓库连接、SQL数据库实时连接、SQL查询、Python编程、数据可视化和洞察报告等核心功能。其AI助手能够生成SQL查询、创建图表、总结数据,并提供交互式支持和自动错误修正。平台支持从多种工具导入数据,构建数据管道,并实现自动化运行,适合各类数据团队使用。Morph致力于简化数据处理流程,提高组织数据利用效率,充分发挥数据价值。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号