Project Icon

efficientnet-b0

EfficientNet的复合系数法在资源有限设备上提升图像分类效果

EfficientNet是一种训练于ImageNet-1k数据集、分辨率为224x224的卷积模型。该模型提出了复合系数方法,以均衡缩放模型的深度、宽度和分辨率。在移动设备上表现卓越,适用于图像分类。同时,用户可在Hugging Face平台上获取特定任务的微调版本。

efficientdet - EfficientDet目标检测模型的PyTorch实现
COCO数据集EfficientDetGithub开源项目深度学习目标检测计算机视觉
本项目提供了EfficientDet目标检测模型的PyTorch实现。支持COCO数据集的训练、评估和测试,在COCO val2017上达到0.314 mAP。包含预训练权重、视频测试功能和使用说明。适合研究人员和开发者参考使用。
convnext_base.fb_in22k_ft_in1k_384 - 高效的ConvNeXt图像分类解决方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型对比特征提取
ConvNeXt图像分类模型经过ImageNet-22k的预训练和ImageNet-1k的微调,以384x384分辨率高效执行分类任务。拥有88.6M参数和45.2 GMACs,支持图像分类、特征提取和图像嵌入等功能。适用于多种机器学习任务,其高分辨率处理能力使其在深度学习领域具有良好表现。
mobilenetv3_large_100.miil_in21k_ft_in1k - MobileNet-v3图像分类模型结合大规模和标准数据集优势
GithubHuggingfaceImageNetMobileNet-v3timm图像分类开源项目模型特征提取
MobileNet-v3是一款轻量级图像分类模型,由阿里巴巴MIIL团队在ImageNet-21k-P上预训练并在ImageNet-1k上微调。模型参数仅5.5M,适合资源受限设备。除图像分类外,还可用于特征图提取和图像嵌入,为视觉任务提供基础。该模型结合了大规模和标准数据集的优势,在保持高效性的同时提升了性能。
DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
convnext_small.fb_in22k_ft_in1k_384 - ConvNeXt模型提升图像分类精度的预训练与微调方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型比较特征提取
ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。
ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
tf_mobilenetv3_large_075.in1k - MobileNet-v3大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMobileNetV3图像分类开源项目模型深度学习特征图提取
该模型为MobileNet-v3图像分类模型,基于ImageNet-1k数据集在Tensorflow上训练,并由Ross Wightman移植至PyTorch实现。使用224x224图像,拥有4.0百万参数和0.2 GMACs的效率。提供代码示例,帮助实现图像分类、特征提取和图像嵌入。更详细的比较信息可于timm项目页面查阅。
Efficient-Computing - 华为诺亚方舟实验室开发的AI模型优化技术集合
GithubHuawei Noah's Ark Lab开源项目模型压缩深度学习神经网络高效计算
Efficient-Computing项目旨在提高AI模型的计算效率和性能。这个由华为诺亚方舟实验室开发的高效计算方法集合包含多个子项目,涵盖了模型压缩、二值神经网络、知识蒸馏、网络剪枝、模型量化、自监督学习、训练加速、目标检测和低层视觉等领域的技术。该项目为AI研究和开发提供了多样化的工具和资源。
resnet-50 - ResNet v1.5模型及其应用于图像识别
GithubHuggingfaceImageNetResNet-50卷积神经网络图像分类开源项目模型残差学习
ResNet v1.5模型采用残差学习和跳跃连接技术,可以训练更深的网络,提升图像识别精度。该版本在3x3卷积中进行下采样,与v1版相比略降性能但提升准确率。在ImageNet-1k数据集上预训练后,适合用于图像分类任务,并可通过Hugging Face平台进行微调。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号