Project Icon

mobilenet_v2_1.0_224

轻量级移动设备图像分类神经网络MobileNet V2

MobileNet V2是一款针对移动设备优化的图像分类神经网络模型,在ImageNet-1k数据集上进行预训练。该模型以低延迟和低功耗著称,适用于资源受限的环境。MobileNet V2支持多种分辨率和深度配置,在模型大小、推理速度和准确性之间实现了良好平衡。除图像分类外,它还可应用于目标检测、特征嵌入和图像分割等计算机视觉任务,为移动端应用提供了versatile的解决方案。

res2net50_14w_8s.in1k - Res2Net架构的多尺度骨干网络实现高效图像分类
GithubHuggingfaceImageNetRes2Nettimm图像分类开源项目模型深度学习模型
res2net50_14w_8s.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,具有2510万参数,计算复杂度为4.2 GMACs。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。模型接受224x224像素的输入图像,并提供API支持图像分类、特征图提取和图像嵌入等功能。其高效的多尺度结构使其在保持准确性的同时降低了计算成本。
convnextv2_tiny.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型 FCMAE预训练与ImageNet微调
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2架构的图像分类模型采用全卷积掩码自编码器(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。该模型拥有2860万参数,224x224输入尺寸下达到83.894%的top1准确率。适用于图像分类、特征提取和图像嵌入等计算机视觉任务,为高效图像处理提供了强大支持。
convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
fbnetv3_b.ra2_in1k - FBNet-v3轻量级图像分类模型支持多种应用场景
FBNet-v3GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
fbnetv3_b.ra2_in1k是基于FBNet-v3架构的轻量级图像分类模型。该模型在ImageNet-1k数据集上训练,使用RandAugment数据增强和EMA权重平均等技术。模型参数仅8.6M,GMAC为0.4,适合移动设备部署。支持图像分类、特征图提取和图像嵌入等应用,可用于多种计算机视觉任务。
clip-vision-model-tiny - 轻量级AI图像处理与分析视觉模型
GithubHuggingfaceMIT协议代码许可开源协议开源项目模型许可证软件授权
基于MIT许可证开发的轻量级图像视觉模型,采用紧凑架构设计,具备高效的图像处理和分析能力。该开源项目适用于快速部署场景,可在资源受限环境中保持准确的图像识别表现。
convnextv2_tiny.fcmae_ft_in1k - ConvNeXt-V2轻量级图像分类和特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型预训练模型
convnextv2_tiny.fcmae_ft_in1k是基于ConvNeXt-V2架构的轻量级图像分类模型。该模型通过全卷积masked自编码器预训练,在ImageNet-1k数据集微调,拥有2860万参数。它可用于图像分类、特征图提取和图像嵌入,在ImageNet验证集上Top-1准确率达82.92%。这是一个在性能和效率间取得平衡的优秀选择。
efficientnet_b1.ft_in1k - 基于ImageNet-1k微调的EfficientNet图像分类模型
EfficientNetGithubHuggingfaceImageNet-1kPyTorch图像分类开源项目模型特征图提取
EfficientNet图像分类模型已在ImageNet-1k上进行微调,适用于PyTorch。该模型参数为7.8M,支持特征图提取和图像嵌入,可用作高效的图像分类工具。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
tf_efficientnetv2_xl.in21k_ft_in1k - EfficientNet-v2开源图像分类与特征抽取模型
EfficientNet-v2GithubHuggingfaceImageNet-21kTensorFlowtimm图像分类开源项目模型
EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。
densenet201.tv_in1k - DenseNet图像分类模型实现高效特征提取与精准分类
DenseNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习计算机视觉
DenseNet201是一个在ImageNet-1k数据集上训练的图像分类模型。该模型拥有2000万参数,支持224x224像素输入,适用于图像分类、特征图提取和图像嵌入等任务。其密集连接的卷积网络结构不仅提供准确的分类结果,还能生成丰富的特征表示。模型通过timm库提供预训练权重,便于快速部署和使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号