Project Icon

efficientnet_b1.ft_in1k

基于ImageNet-1k微调的EfficientNet图像分类模型

EfficientNet图像分类模型已在ImageNet-1k上进行微调,适用于PyTorch。该模型参数为7.8M,支持特征图提取和图像嵌入,可用作高效的图像分类工具。

EfficientNet_B1.ft_in1k 项目介绍

项目背景

EfficientNet_B1.ft_in1k 是一个图像分类模型,属于EfficientNet系列。这一模型是通过在大规模图像数据集ImageNet-1k上的微调,将原本在TensorFlow中使用的"SAME"填充权重转换为可在PyTorch中使用的版本。此模型旨在提供高效且准确的图像分类功能,适用于各种图像识别任务。

模型特点

数据集

EfficientNet_B1.ft_in1k 模型使用ImageNet-1k数据集进行训练和验证。这个数据集包含了大量的标记图像,广泛应用于图像分类的研究和开发中。

模型使用方法

图像分类

通过以下Python代码,可加载并运行EfficientNet_B1模型进行图像分类:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('efficientnet_b1.ft_in1k', pretrained=True)
model = model.eval()

# 获取模型特定的转换(归一化、调整大小)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 将单个图像扩展为一个批次

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

该模型还支持从图像中提取特征图,适合用于进一步的视觉分析:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'efficientnet_b1.ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# 获取模型特定的转换(归一化、调整大小)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 将单个图像扩展为一个批次

for o in output:
    print(o.shape)

图像嵌入

模型还支持生成图像嵌入,其以特征向量的形式表示图像:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'efficientnet_b1.ft_in1k',
    pretrained=True,
    num_classes=0,  # 去除分类器nn.Linear
)
model = model.eval()

# 获取模型特定的转换(归一化、调整大小)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))

output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)

模型比较

EfficientNet_B1是当前主流图像分类模型之一,用户可以在timm的模型结果页面中探索其与其他模型的数据和运行时性能比较。

引用

若希望进一步研究,请参考以下文献:

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@inproceedings{tan2019efficientnet,
  title={Efficientnet: Rethinking model scaling for convolutional neural networks},
  author={Tan, Mingxing and Le, Quoc},
  booktitle={International conference on machine learning},
  pages={6105--6114},
  year={2019},
  organization={PMLR}
}

总之,EfficientNet_B1.ft_in1k是一个功能强大的模型,能够在保证高效性的同时,实现出色的图像分类性能。适用于各种需要图像识别和特征提取的场合。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号