Project Icon

mt5-base

多语言预训练文本转换模型 覆盖101种语言的强大NLP工具

mt5-base是Google开发的基于T5架构的多语言预训练模型,涵盖101种语言。该模型在mC4语料库上进行预训练,适用于多种跨语言NLP任务。使用时需针对特定任务进行微调。mt5-base在多语言基准测试中表现出色,为自然语言处理领域提供了有力支持。

mbart-large-cc25 - 基于深度学习的多语言模型支持文本翻译与摘要微调
GithubHugging FaceHuggingfacembart-large-cc25多语言开源项目模型翻译预训练模型
mbart-large-cc25是一个多语言预训练模型,支持多种语言的翻译和文本摘要功能,涵盖了英语、中文、德语等多种语言。此模型可以在特定任务中进行微调,相关代码和文档可在PyTorch和Hugging Face上获得。在多语言交互的应用场景中,该模型表现出良好的适应性与功能性。
multitask-text-and-chemistry-t5-base-augm - 多任务文本与化学T5适用于化学与自然语言的多领域模型
GithubHuggingfaceIBM研究院Multitask Text and Chemistry T5化学多任务开源项目模型语言模型
Multitask Text and Chemistry T5是一个基于Transformer的多任务语言模型,应用于化学和自然语言领域的多种任务。它以t5-small为预训练基础,并通过增强数据集进行训练。2023年发布,该模型由IBM Research与丹麦技术大学合作开发并集成于GT4SD。应用领域包括正向反应预测、逆合成、分子注释、文本条件的生成和段落到动作的转换。
mbart-large-50 - 面向多语言翻译的序列到序列神经网络模型
GithubHuggingfacemBART-50多语言翻译序列到序列模型开源项目机器翻译模型预训练模型
mBART-50模型支持50种语言间的互译,基于序列到序列架构开发。该模型通过降噪预训练方法提升性能,包含句子重排和文本掩码等创新技术。作为mBART的扩展版本,覆盖英语、中文、日语在内的主要语言,可用于各类多语言自然语言处理任务。
t5-base-finetuned-question-generation-ap - T5微调模型用于高效问题生成
GithubHuggingfaceSQuADT5开源项目模型自然语言处理迁移学习问题生成
T5-base模型在SQuAD数据集上进行微调,通过整合答案和上下文实现问题生成。项目依托Hugging Face的Transformers库,在Google的支持下,利用迁移学习提升自然语言处理的精确度。支持大规模无标签数据集加载及优化训练脚本,以改善问答生成性能。
mGPT - 基于GPT架构的大规模多语种自然语言处理模型
GPTGithubHuggingfaceMegatron多语言模型开源项目模型深度学习自然语言处理
作为一个基于GPT-3架构的多语言处理模型,mGPT具备13亿参数量,覆盖25个语系的61种语言。模型采用Wikipedia和Colossal Clean Crawled Corpus作为训练数据,结合Deepspeed与Megatron框架实现并行计算,在低资源语言处理领域达到与XGLM相当的性能水平。模型训练过程中处理了488亿UTF字符,借助256个NVIDIA V100 GPU完成了为期14天的训练。
mbart-large-50-many-to-many-mmt - mBART-50多语言机器翻译模型实现50种语言直接互译
GithubHugging FaceHuggingfacemBART-50多语言机器翻译开源项目模型深度学习自然语言处理
mbart-large-50-many-to-many-mmt是基于mBART-large-50微调的多语言机器翻译模型,支持50种语言间直接互译。通过指定目标语言ID作为首个生成token,模型可实现高质量翻译。涵盖主流和低资源语言,该模型为跨语言交流提供了有力支持,无需借助中间语言即可完成翻译任务。
mt-dnn - 多任务深度神经网络在自然语言理解中的最新应用
GithubMT-DNNPyTorch多任务深度神经网络开源项目自然语言理解预训练模型
该项目实现了基于PyTorch的多任务深度神经网络(MT-DNN),主要用于自然语言理解。最新版本添加了语言模型预训练和微调的对抗性训练功能。用户可以使用pip安装或通过Docker快速启动,项目提供详细的训练和微调步骤,支持序列标注和问答任务。此外,项目包含模型嵌入提取和训练加速功能。目前由于政策变化,公共存储解决方案暂不提供。
xmtf - 通过多任务微调提升跨语言泛化能力
BLOOMZGithubmT0xP3多任务微调开源项目跨语言泛化
XMTF项目探索了通过多语言多任务微调来增强模型的跨语言泛化能力。研究者基于BLOOM和mT5模型,使用xP3数据集进行微调,开发了BLOOMZ和mT0系列模型。这些模型在46种语言的13个任务上接受训练,展现出显著的跨语言和跨任务迁移学习能力。项目公开了完整的数据处理流程、模型训练方法和评估体系,为自然语言处理领域的跨语言研究提供了重要参考。
mindnlp - 开源自然语言处理与大语言模型框架
GithubMindNLPMindSpore大语言模型开源项目自然语言处理预训练模型
MindNLP是一个基于MindSpore的开源自然语言处理库,支持语言模型、机器翻译、问答系统、情感分析、序列标注和摘要生成等多种任务。该项目集成了BERT、Roberta、GPT2和T5等多种预训练模型,通过类似Huggingface的API简化了使用流程。用户可通过pypi或源代码安装该库,并支持包括Llama、GLM和RWKV在内的大型语言模型的预训练、微调和推理,非常适合研究者和开发人员构建和训练模型。
ModelCenter - 高效实现大规模预训练语言模型的开源工具
GithubModelCenter低资源分布式训练大语言模型开源项目高效实现
ModelCenter是一个开源的预训练语言模型实现工具。它基于OpenBMB/BMTrain后端,支持高效低资源的模型使用和分布式训练。相较于其他框架,ModelCenter在代码封装、环境配置、内存利用和训练速度等方面都有明显优势。该工具支持BERT、GPT、T5等多种主流预训练模型,并提供简洁易用的API接口。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号