Project Icon

owlv2-large-patch14-ensemble

Google OWLv2模型实现零样本开放词汇目标检测

OWLv2是Google开发的基于CLIP的零样本目标检测模型。它使用ViT-L/14架构和掩蔽自注意力Transformer分别处理图像和文本输入。通过端到端训练,OWLv2实现了开放词汇的物体分类和定位,可根据多个文本查询执行目标检测。该模型在公开数据集上训练,为计算机视觉研究提供了新的可能性。

CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPGithubPyTorch图像识别开源项目模型训练自然语言处理
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
ViT-L-16-HTxt-Recap-CLIP - 对比图文模型在零样本图像分类中的新进展
CLIPGithubHuggingfaceLLaMA-3图像分类对比学习开源项目数据集偏见模型
这个模型利用Recap-DataComp-1B数据集训练,旨在实现零样本图像分类。通过OpenCLIP库,用户能够编码和分类图像与文本。模型的数据源自网络抓取并经过重新标注,可能会包含偏见或不准确之处,请在使用时注意这些风险。更多数据集详情可以查阅数据集卡片页面。
llava-v1.6-34b-hf - 图像与文本交互的多模态AI模型
GithubHuggingfaceLLaVa-NeXTNous-Hermes-2-Yi-34B光学字符识别多模态聊天机器人开源项目模型视觉指令微调
LLaVa-NeXT模型结合大规模语言模型与视觉编码器,通过提高图像分辨率和优化数据集,增强了OCR和常识推理能力,适用于多模态对话应用场景。支持图像字幕生成和视觉问答,提供双语功能与商业许可保障。
llava-v1.5-7b-llamafile - LLaVA模型实现图像理解与自然语言交互的多模态AI
GithubHuggingfaceLLaVA人工智能多模态模型开源项目机器学习模型自然语言处理
LLaVA-v1.5-7b-llamafile作为一个开源多模态AI模型,通过微调LLaMA/Vicuna而成。它整合了图像理解和自然语言处理功能,能够执行图像相关指令和进行对话。该模型于2023年9月推出,主要用于研究大型多模态模型和聊天机器人。LLaVA的训练数据包括558K图像-文本对和多种指令数据,在12个基准测试中表现优异。这个模型为计算机视觉和自然语言处理领域的研究人员提供了探索AI前沿应用的有力工具。
LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
ViT-B-16-SigLIP-256 - WebLI数据集训练的SigLIP图像-文本对比学习模型
GithubHuggingfaceSigLIPWebLI图像分类图像文本对比开源项目模型模型使用
ViT-B-16-SigLIP-256是基于WebLI数据集训练的SigLIP模型,支持零样本图像分类。该模型兼容OpenCLIP和timm库,通过对比学习生成图像和文本特征表示。它能够计算图像与文本标签的相似度,适用于灵活的图像分类和检索应用。SigLIP采用Sigmoid损失函数进行语言-图像预训练,提高了模型性能。
vit_tiny_patch16_224.augreg_in21k - 增强与正则化的ViT图像分类模型
GithubHuggingfaceImageNet-21kVision Transformer图像分类开源项目数据增强模型特征骨干
这是一个高效的Vision Transformer(ViT)图像分类模型,经过增强和正则化,在ImageNet-21k上进行了训练。由论文作者在JAX中开发,并由Ross Wightman移植到PyTorch。模型的类型包括图像分类和特征提取,参数量为9.7百万,1.1 GMACs,处理图像尺寸为224x224。项目中有图像分类和嵌入的代码示例,以及支持特定数据转换的功能,提升模型性能。该模型适用于高效图像识别应用,并提供开发者比较参考的方法。
octopus-v4 - 打造全球最大语言模型网络 提升开源AI表现
AI模型图谱GithubGraph of Language ModelsMMLU基准测试Octopus-v4专业模型开源项目
Octopus-v4项目构建大规模语言模型网络,集成专业模型并优化节点连接。通过开源协作提升AI性能,与闭源模型竞争。项目开放专业模型训练和推理代码,建立领域语言模型排行榜。Octopus-v4在MMLU测试中达到74.6%的成绩,优于多个主流模型。
LLaVA - 提升大型语言与视觉模型的视觉指令调优
GPT-4GithubLLaVA多模态交互大型语言与视觉模型开源项目视觉指令调优
LLaVA项目通过视觉指令调优提升大型语言与视觉模型的性能,达到了GPT-4级别。最新更新包括增强版LLaVA-NeXT模型及其在视频任务上的迁移能力,以及高效的LMMs-Eval评估管道。这些更新提升了模型的多任务和像素处理能力,支持LLama-3和Qwen等不同规模的模型,并提供丰富的示例代码、模型库和数据集,方便用户快速上手和深度研究。
VILA - 创新的视觉语言模型预训练方法
GithubVILA多模态开源项目视觉语言模型量化预训练
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号