Project Icon

MoLFormer-XL-both-10pct

大规模分子语言模型实现化学结构与性质预测

MoLFormer是一个在ZINC和PubChem数据集上训练的化学语言模型,通过处理11亿分子的SMILES表示实现分子特征学习。模型采用线性注意力机制与旋转位置编码,在MoleculeNet的11个基准任务中展现优异性能。该模型可应用于分子相似度分析、特征提取及分子性质预测,适用于200原子以下的小分子研究。

oneformer_coco_swin_large - 单一模型实现多任务图像分割
GithubHuggingfaceOneFormer图像分割多任务模型实例分割开源项目模型语义分割
OneFormer COCO Swin Large是一款基于COCO数据集训练的多任务图像分割模型。它采用单一架构,通过一次训练就能在语义、实例和全景分割任务中表现出色。模型利用任务令牌技术实现训练引导和动态推理,提供了高效的图像分割方案。此外,它还提供了便捷的API接口,适合各类研究和开发需求。
OLMo-7B - 专注于语言模型科学的开放模型
GithubHuggingfaceOLMo开源项目模型模型性能训练数据集语言模型
OLMo系列模型由Allen Institute for AI开发,旨在推进语言模型科学。该系列模型使用Dolma数据集进行训练,提供诸如OLMo 7B等多种版本及详细的训练检查点和代码支持。这些模型可用于英文学术研究,并可在Hugging Face平台上获取。项目获得哈佛大学、Databricks、AMD等机构支持,并在MMLU测试中显示出明显的性能提升。
mask2former-swin-large-ade-semantic - Mask2Former:统一架构实现多类型图像分割
GithubHuggingfaceMask2FormerTransformer图像分割开源项目模型计算机视觉语义分割
Mask2Former-Swin-Large-ADE-Semantic是一款先进的图像分割模型,基于Swin backbone构建并在ADE20k数据集上训练。该模型采用统一架构处理实例、语义和全景分割任务,通过预测掩码和标签集实现多类型分割。其核心优势在于采用改进的多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率方面均优于前代MaskFormer模型。Mask2Former适用于广泛的图像分割场景,能够提供精确的分割结果。
En-transformer - 融合等变图神经网络与Transformer的创新架构
E(n)-Equivariant TransformerGithub坐标变换开源项目注意力机制神经网络蛋白质设计
En-transformer是一个创新的开源项目,结合了E(n)等变图神经网络与Transformer架构。支持原子和键类型嵌入,处理稀疏邻居,传递连续边特征。已应用于抗体CDR环设计,并可用于蛋白质骨架坐标去噪等分子建模任务。项目提供简便的安装和使用方法,适合研究人员和开发者探索。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
esm2_t6_8M_UR50D - ESM-2系列最小规模蛋白质序列预训练模型
ESM-2GithubHuggingface开源项目机器学习模型生物信息学自然语言处理蛋白质模型
esm2_t6_8M_UR50D是ESM-2系列中参数最少的蛋白质语言模型,仅包含6层网络结构和800万参数。该模型通过掩码语言建模方法训练,可用于多种蛋白质序列输入任务的微调。尽管规模小巧,但在计算资源有限的情况下仍可提供不错的性能。研究人员可利用此模型快速开展蛋白质序列相关研究,为后续使用更大规模模型做准备。
xlnet-base-cased - 创新的广义排列语言建模与自回归预训练技术
GithubHuggingfaceTransformerXLNet开源项目机器学习模型自然语言处理预训练模型
XLNet是一种创新的无监督语言表示学习方法,采用广义排列语言建模目标和Transformer-XL架构。这使得它在处理长上下文语言任务时表现卓越,并在多个下游任务中取得了领先成果。作为一个预训练模型,XLNet主要用于微调特定任务,尤其适合需要理解完整句子的应用场景,如序列分类、标记分类和问答系统等。
makeMoE - 从零构建的稀疏混合专家语言模型的makemore项目
DatabricksGithubmakeMoEpytorch开源项目稀疏专家混合语言模型
makeMoE是一个基于Andrej Karpathy的makemore项目, 从零构建的稀疏混合专家语言模型。它借鉴了makemore的部分组件,例如数据预处理和生成莎士比亚风格文本。在架构上,makeMoE引入了稀疏专家混合、Top-k门控和噪声Top-k门控等改进。项目在Databricks上使用单一A100 GPU开发,支持大规模GPU集群扩展,并通过MLFlow进行指标跟踪。项目强调代码的可读性和修改性,适合深入学习和改进。
TimeMoE-50M - 混合专家时间序列预测基础模型 提升大规模数据分析能力
GithubHuggingfaceTimeMoE基础模型开源项目时间序列预测模型深度学习混合专家模型
TimeMoE-50M是一个基于混合专家(MoE)架构的时间序列预测基础模型,专为处理十亿规模数据而设计。此模型旨在优化大规模时间序列分析的准确性和效率。开发者可在GitHub页面上找到详细的使用指南和实现方法,有助于将其整合到各类时间序列分析项目中,提升预测能力。
flan-t5-xxl - 多语言自然语言处理的先进模型
FLAN-T5GithubHuggingface多语言模型开源项目指令微调模型自然语言处理语言生成
FLAN-T5 XXL是一款经过大规模指令微调的多语言语言模型。该模型在超过1000个涵盖多种语言的任务上进行了训练,在少样本和零样本学习方面表现卓越。在多项基准测试中,FLAN-T5 XXL展现了领先性能,例如在五样本MMLU测试中达到75.2%的准确率。这个模型可应用于翻译、问答和推理等多种自然语言处理任务,为研究人员提供了探索语言模型能力和局限性的有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号