Project Icon

awesome_LLMs_interview_notes

LLMs 面试记录与回答

提供LLMs大模型面试记录与回答,适合需要了解相关知识点的用户参考。由于版权问题,部分内容已下架,请访问原作付费观看。页面附有大模型训练的知乎专栏链接和Star-History图表。

Awesome-Code-LLM - 全面梳理了代码领域的语言模型研究,涵盖最新的论文和研究成果
Code GenerationGithubLLMLanguage Models for CodeNLPSoftware Engineering开源项目
《Awesome-Code-LLM》项目全面梳理了代码领域的语言模型研究,涵盖最新的论文和研究成果。这是一个极佳资源,旨在增强NLP与软件工程使用中语言模型的效果和效率,提供详尽的研究资源,非常适合机器学习初学者和NLP新手深入了解该领域。
Awesome-Efficient-LLM - 知识蒸馏、网络剪枝、量化和加速推理等针对大型语言模型优化的关键技术的汇总
GithubLarge Language Models开源项目效率优化模型剪枝知识蒸馏量化
Awesome-Efficient-LLM项目汇总了针对大型语言模型优化的关键技术,包括知识蒸馏、网络剪枝、量化和加速推理等,支持研究者和开发者获取最新的效率提升方法和学术文献。该平台定期更新,提供过去60天内的相关研究成果,便于用户系统地探索和应用这些高效技术。
Awesome-Multimodal-LLM - 大语言模型(LLM)在多模态学习中的最新研究趋势
GithubLLM多模态学习开源开源项目模型微调神经网络
本页面介绍大语言模型(LLM)在多模态学习中的最新研究趋势,包括文本、视觉(图像和视频)、音频等多种模态。重点讨论如LLaMA、Alpaca和Bloom等开源且适合研究的LLM骨干模型及其学习方法,如全量微调、参数有效微调、上下文学习等。同时列举了具体的多模态LLM模型实例,如OpenFlamingo和MiniGPT-4,以及评估方法,如MultiInstruct和POPE,提供科研人员了解和研究LLM引导多模态学习的资源。
MLQuestions - 65个机器学习面试问题助您备战2024年技术面试
Github开源项目机器学习深度学习神经网络计算机视觉面试问题
MLQuestions项目收录65个机器学习和计算机视觉工程师技术面试问题。涵盖偏差-方差权衡、卷积神经网络等主题,并新增自然语言处理问题。提供在线课程和推荐书籍等准备资源。问题内容包括机器学习基础、深度学习技术和计算机视觉算法,适合求职者全面备战2024年技术面试。
Awesome-LLM-Inference - 一系列关于涵盖了从基础框架到先进技术的大型语言模型推理的研究论文和配套代码
Awesome-LLM-InferenceGithub开源项目模型推理模型训练算法优化量化压缩
Awesome-LLM-Inference项目提供了一系列关于大型语言模型推理的研究论文和配套代码,涵盖了从基础框架到先进技术的全面资源,旨在帮助研究人员和开发者提高推理效率和性能。提供了全面的信息和技术支持,用于研究和开发高性能的大型语言模型。
RES-Interview-Notes - 推荐系统算法与实践全面指南
Github协同过滤开源项目推荐系统机器学习深度学习矩阵分解
RES-Interview-Notes项目全面涵盖推荐系统各个方面,包括基础理论、传统算法、深度学习模型及工程实践。内容涉及协同过滤、矩阵分解等经典方法,以及AutoRec、NeuralCF等前沿模型。同时探讨了系统评估和落地实施,为推荐算法工程师提供系统学习资料。
interviews.ai - 深度学习面试宝典,涵盖广泛AI关键主题
AIBayesian统计Deep Learning InterviewsGithub卷积神经网络开源项目机器学习
本书包含数百个AI面试问题的详细解答,涵盖信息理论、贝叶斯统计和算法微分等核心主题。特别为数据科学研究生和求职者设计,帮助在面试中脱颖而出。无论是初学者还是有经验的研究人员,都能从中获益。书中配有清晰图表和逐步解析,助读者全面掌握深度学习理论和实践。
Awesome-Graph-LLM - 探索图结构与大语言模型的前沿融合及应用
Github图模型图神经网络多模态模型大语言模型开源项目知识图谱
Awesome-Graph-LLM项目汇集图相关大语言模型(Graph-LLM)领域的前沿研究成果和资源。内容涵盖数据集、基准测试、综述文章,以及图推理、节点分类、图分类等应用。项目还收录图提示、通用图模型和多模态模型等新兴方向的相关工作,为Graph-LLM研究提供全面参考。
llm-course - 大型语言模型的基础知识、科学研究与工程实践
GithubLLM课程Python大型语言模型开源项目机器学习神经网络
LLM-course涵盖数学基础、Python 编程和神经网络等基本知识,然后深入探索使用最新技术构建优秀大型语言模型的科学研究,及开发和部署基于LLM的应用程序的工程实践。课程结合理论与实践,提供互动辅助工具和丰富笔记本,有助于全面理解大型语言模型。还包括量化优化、模型融合和解码策略等高级主题。
dl_note - 深度学习全栈指南 从计算机视觉到大语言模型
GithubLLM开源项目推理部署模型压缩深度学习神经网络
dl_note项目是一个综合性深度学习资源库,涵盖从数学基础到模型部署的全过程。内容包括神经网络基础、深度学习技巧、模型压缩、推理优化及大语言模型等。项目注重实际应用,提供详细代码解析和实战经验,适合深度学习技术的学习者和从业者参考使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号