Project Icon

awesome_LLMs_interview_notes

LLMs 面试记录与回答

提供LLMs大模型面试记录与回答,适合需要了解相关知识点的用户参考。由于版权问题,部分内容已下架,请访问原作付费观看。页面附有大模型训练的知乎专栏链接和Star-History图表。

open-llms - 开放源代码大型语言模型及其商业应用全景解析
Apache 2.0GithubLarge Language Models商业使用许可开源开源项目模型发布
Open-llms 项目展示了众多采用开源许可证的大型语言模型(LLMs),支持商业应用,涵盖如T5、GPT-NeoX、YaLM等模型。每款模型设有详细说明及许可信息,鼓励社区交流与贡献,是机器学习研究和应用的重要资源库。
llm-paper-notes - 大语言模型论文笔记集锦 追踪AI研究前沿进展
GithubTransformer人工智能大语言模型开源项目自然语言处理论文笔记
该项目汇集了大语言模型领域的关键论文笔记。内容涵盖Transformer架构、注意力机制、预训练方法、缩放法则和检索增强生成等核心主题。通过精炼总结,为研究者和开发者提供LLM领域的核心概念和最新进展概览,便于快速了解AI前沿研究动态。
Data-Science-Interview-Questions-Answers - 数据科学面试问题与答案精选
Data-Science-Interview-Questions-AnswersGitHubGithub开源项目数据科学机器学习深度学习
提供全面的数据科学面试问题与答案,涵盖机器学习、深度学习、统计学、概率、Python和简历相关问题。定期更新,帮助求职者准备面试,分享行业专家经验。
LLMSurvey - 大型语言模型(LLM)的论文和资源的汇总
GPT系列GithubLLMSurvey大型语言模型开源项目技术演进调优实验
LLMSurvey 汇总了大量关于大型语言模型(LLM)的论文和资源。介绍了从GPT到LLaMA系列的技术演变,分析了在指令调整实验中不同类型指令对LLM性能的影响,同时提供了针对初学者的中文书籍,以帮助理解该领域的基本框架和发展路线。
Deep-Learning-Interview-Book - 详尽介绍深度学习求职面试所需的各类知识
Deep Learning Interview BookGithub开源项目机器学习求职攻略深度学习自然语言处理
该指南全面涵盖深度学习领域的求职面试知识,包括数学、机器学习、深度学习、强化学习、计算机视觉、图像处理、自然语言处理、SLAM、推荐算法、数据结构与算法、编程语言(C/C++/Python)、深度学习框架等,旨在帮助求职者高效准备面试。
Awesome-LLM-in-Social-Science - 大型语言模型在社会科学中的评估与应用研究
GithubLLM人工智能对齐开源项目社会科学评估
本项目收集了关于大型语言模型(LLMs)在社会科学领域的评估和应用研究论文。内容涉及LLMs的价值观、人格、道德、观点和能力评估,以及其在社会科学工具改进、模拟和对齐方面的应用。项目还包括相关主题的综述和观点文章,为研究人员提供LLMs在社会科学中应用的全面概览。
Machine-Learning-Notes - 机器学习从入门到精通的全面笔记
Github人工智能学习开源项目机器学习笔记计算机科学
Machine-Learning-Notes 是一个机器学习领域的学习资源库,提供从基础到高级的笔记。项目涵盖算法、模型和实践应用,适合不同水平的学习者。资料全面且定期更新,采用循序渐进的学习方法,有助于系统掌握机器学习知识。其独特的结构化组织使学习者能够轻松找到所需资源,从而更有效地提升技能。
Awesome-Multimodal-Large-Language-Models - 多模态大语言模型研究资源与最新进展汇总
Github多模态大语言模型开源项目指令微调模型评估视觉语言模型视频理解
该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。
what-llm-to-use - 主流开源与商业LLM模型的选择标准、特点及应用场景的详细介绍
DevAIGithubLLM商业模型开源模型开源项目编程
DevAI领域发展迅速,开发者需选择适合的LLM模型。本文详细介绍主流开源与商业LLM模型的选择标准、特点及应用场景,包含从本地环境到托管服务的部署指南,提供全面对比与建议,帮助开发者提升开发效率。欢迎贡献意见以完善此LLM索引。
dive-into-llms - 大语言模型实践教程
GithubLLM人工智能大模型开源项目教程编程实践
该项目提供一系列大语言模型实践教程,涵盖模型微调、部署、提示学习、知识编辑、水印技术等多个前沿主题。通过动手实践,学习者可快速掌握大模型技术,为相关课程和研究奠定基础。教程内容源自上海交通大学课程,适合AI爱好者和研究人员学习使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号