Project Icon

wav2vec2-large-xlsr-53-hungarian

基于XLSR-53微调的匈牙利语语音识别模型

该模型基于wav2vec2-large-xlsr-53在匈牙利语语音数据上微调而来,在Common Voice测试集上实现31.40%的词错误率和6.20%的字符错误率,性能优于同类模型。支持16kHz采样率的语音输入,无需额外语言模型即可使用。开发者可通过HuggingSound库或自定义脚本轻松集成该模型,实现匈牙利语语音识别功能。

wav2vec2-large-danish-npsc-nst - 基于XLS-R微调的高性能丹麦语语音识别模型
GithubHuggingfacewav2vec2丹麦语开源项目模型深度学习自然语言处理语音识别模型
wav2vec2-large-danish-npsc-nst是一个针对丹麦语语音识别优化的模型,基于chcaa/xls-r-300m-danish进行微调。经过15轮训练,模型在评估集上表现出色,损失降至0.0587,词错误率仅为6.69%。采用Adam优化器、线性学习率调度和混合精度训练等先进技术,显著提升了模型性能。
wav2vec2-large-xlsr-53-th - 基于Common Voice数据集微调的泰语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型泰语自然语言处理语音识别
该项目提供了一个基于wav2vec2-large-xlsr-53架构的泰语语音识别模型。模型使用Common Voice 7.0数据集进行微调,在测试集上实现了13.63%的词错率和2.81%的字符错率。项目详细介绍了数据预处理、模型训练和评估流程,并与主流商业API进行了性能对比。此模型可用于开发泰语语音转文本应用,为泰语自然语言处理研究提供了有价值的资源。
english-filipino-wav2vec2-l-xls-r-test-09 - XLSR-53架构英语和菲律宾语双语语音识别模型
GithubHuggingfacewav2vec2人工智能开源项目机器学习模型语音模型语音识别
这是一个基于wav2vec2-large-xlsr-53-english模型在filipino_voice数据集上微调的英语-菲律宾语语音识别模型。通过20轮训练,模型在评估集上达到1.0054的损失值和57.50%的词错误率。采用Adam优化器、线性学习率调度和混合精度训练等技术,模型性能逐步提升,最终实现了较好的双语语音识别效果。
wav2vec2-large-xls-r-300m-Urdu - 基于wav2vec2的乌尔都语语音识别模型
Common VoiceGithubHuggingfaceUrduwav2vec2开源项目模型模型微调语音识别
这是一个基于wav2vec2-xls-r-300m在Common Voice 8数据集上微调的乌尔都语语音识别模型。模型在测试集上达到39.89%的词错误率和16.7%的字符错误率。通过200轮训练,采用线性学习率调度和Adam优化器。模型支持简单的Python代码推理,并可与语言模型集成以提升性能。
wav2vec2-btb-cv-ft-btb-cy - 基于微调的语音识别模型,提升准确度与适用性
GithubHuggingfacewav2vec2开源项目损失率模型模型优化自动语音识别训练参数
此AI模型基于DewiBrynJones的wav2vec2-xlsr-53-ft-btb-cv-cy微调而成,专注提升自动语音识别精确度。评估词错误率为0.3402,表现出明显改善。使用Adam优化器,学习率为0.0003,训练批次为4。适用于高精度需求的语音识别场景,但因缺乏训练数据和用途的细节说明,适用性需谨慎评估。
wav2vec2-large-xlsr-bahasa-indonesia - wav2vec2架构的印尼语语音识别模型
Common VoiceGithubHuggingfaceWav2vec2Whisper印尼语开源项目模型语音识别
这是一个开源的印尼语自动语音识别模型,基于wav2vec2-large-xlsr架构。模型使用Common Voice 6.1印尼语数据集训练,测试集词错误率为19.3%。项目提供训练代码仓库和联系方式。值得注意的是,作者已发布新版模型,具有更小体积和更低的5.9% WER。
wav2vec2-large-lv60 - 深度学习实现高性能语音识别 仅需少量标记数据
GithubHuggingfaceWav2Vec2开源项目模型深度学习语音识别语音预训练音频处理
Wav2Vec2是Facebook开发的语音预训练模型,通过无监督学习从原始音频中提取语音特征。该模型在大规模未标注数据上预训练后,能够以极少量的标注数据实现高性能语音识别。在LibriSpeech测试集上,全量标注数据训练可达1.8/3.3词错率;仅用1小时标注数据即超过先前100小时数据的最佳结果;10分钟标注数据也能实现4.8/8.2词错率。Wav2Vec2为低资源环境下的高质量语音识别提供了新的可能性。
wav2vec2-large-xlsr-malayalam - 基于wav2vec2的马来亚拉姆语语音识别模型
GithubHuggingfaceMalayalamWav2Vec2XLSR开源项目模型模型微调语音识别
这个项目是基于wav2vec2-large-xlsr-53模型针对马来亚拉姆语优化的语音识别系统。利用多个马来亚拉姆语语音数据集训练,测试集词错误率达28.43%。模型支持16kHz采样的语音输入,无需额外语言模型。项目提供了使用指南、评估方法和训练流程,便于部署和进一步改进。
wav2vec2-lg-xlsr-en-speech-emotion-recognition - 微调Wav2Vec 2.0实现高精度语音情感识别
GithubHuggingfaceRAVDESS数据集Wav2Vec 2.0开源项目微调模型深度学习语音情感识别
项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号