Project Icon

entity-recognition-datasets

多领域实体识别和命名实体识别任务数据集

此库包含多个领域的实体识别和命名实体识别(NER)任务数据集,包括新闻、社交媒体、医学等。项目提供数据目录和转换代码,部分数据因许可证限制无法直接共享。虽然自2020年起更新较少,但仍接受通过issue或pull request添加的数据集,并支持多种语言的NER数据,如德语、西班牙语和荷兰语等。

bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
name-dataset - 跨国姓名数据库提供全面的名字和姓氏信息分析
Facebook数据GithubPython库个人信息名字数据库开源项目数据分析
names-dataset是一个大型姓名数据库项目,涵盖105个国家的730K个名字和983K个姓氏。项目提供姓名的流行度、国家分布和性别信息,支持多语言和多地区查询。用户可借此了解特定姓名在不同国家的使用情况,有助于人名分析和跨文化研究。该项目为姓名研究提供了丰富的数据资源,包括姓名的流行度排名、地理分布和性别关联。通过简单的Python接口,研究人员和开发者可以轻松获取和分析这些信息,为人名学、人口统计学和社会学研究提供数据支持。数据基于Facebook用户信息。
IndicNER - 面向11种印度语言的多语言命名实体识别模型
GithubHuggingfaceIndicNER印度语言命名实体识别多语言模型开源项目模型自然语言处理
IndicNER是一个针对11种印度语言开发的命名实体识别模型。该模型通过数百万句子的微调训练,并在人工标注测试集和多个公开数据集上进行了性能评估。IndicNER支持阿萨姆语、孟加拉语、古吉拉特语等多种印度语言,能够有效识别句子中的命名实体。作为一个基于最新深度学习技术的工具,IndicNER为印度语言的自然语言处理研究和应用提供了有力支持。
gliner_large-v2.1 - 通用命名实体识别模型,适合资源有限的应用场景
GLiNERGithubHuggingface双向Transformer命名实体识别多语言开源开源项目模型
GLiNER是使用双向Transformer编码器的通用命名实体识别模型,能够识别多种实体类型。相比于传统NER模型和体积庞大的语言模型,GLiNER在资源有限的情况下表现出卓越的灵活性和效率。最新的GLiNER v2.1版本支持单语和多语模型,性能表现依旧出色。用户可以通过安装GLiNER Python库,将其方便地集成到项目中,适用于多种语言的文本预测任务。
biomedical - 生物医学数据集库促进机器学习研究
BigBIOGithub开源项目数据标准化机器学习生物医学数据集自然语言处理
BigBIO是一个基于Huggingface datasets库开发的生物医学数据加载器库。该项目提供超过126个生物医学数据集的轻量级访问,覆盖10余种语言和12个任务类别。BigBIO致力于提高数据处理的可重复性,完善数据集来源和许可等属性的文档,并简化自然语言提示和多任务学习的元数据集生成。此外,BigBIO还支持多个主流英语生物医学基准测试中的大部分数据集。
nbailab-base-ner-scandi - 斯堪的纳维亚语言的命名实体识别模型
GithubHuggingfaceScandiNER北欧语言命名实体识别开源项目数据集模型模型性能
这个模型是NbAiLab/nb-bert-base的精调版本,适用于丹麦语、挪威语、瑞典语、冰岛语和法罗语的命名实体识别(NER)。通过整合DaNE、NorNE、SUC 3.0和WikiANN的一些数据集,模型可以提供高精度的NER结果,并支持多种语言包括英语。识别的实体类型包括人名、地名、组织名及其他类别。模型以Micro-F1得分约为89%的表现,以及4.16样本/秒的处理速度表现出色,同时模型体积合理,带来好的准确性和效率平衡。
ner-english-large - 基于FLERT技术的英语命名实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
ner-english-large是基于Flair框架的英语命名实体识别模型,采用FLERT技术和XLM-R嵌入。该模型可识别人名、地点、组织和其他实体,F1分数为94.36。它易于集成,适用于多种NLP任务,为研究人员和开发者提供了实用的英语文本分析工具。
hatespeechdata - 多语言仇恨言论数据集汇总与研究资源
Github仇恨言论在线辱骂多语言开源项目数据集社交媒体
该项目汇集了涵盖多种语言的仇恨言论、在线辱骂和攻击性语言数据集。收录内容包括来自不同平台的文本、图像和音频数据。项目旨在为自然语言处理系统提供训练资源,以提升有害内容检测能力。此外,项目还提供关键词列表和贡献指南,为研究人员和开发者改进在线内容审核和仇恨言论检测技术提供支持。
datasets - 公共数据集下载和准备的实用库
GithubMNISTTensorFlow Datasetstf.data.Dataset定制化开源项目性能
TensorFlow Datasets是一个公共数据集下载和准备的实用库,简化数据集加载与处理。通过其API,用户可以访问和使用多个预构建数据集,优化训练管道性能,并确保数据的确定性与可重复性。详情请参考官方教程、指南及API文档,支持在Colab笔记本中交互式操作。此工具适合快速集成数据集与进行机器学习模型训练的开发者。
speech-emotion-recognition - 开源多模型语音情感识别系统
Emo-db数据集Github开源项目机器学习模型深度学习模型特征提取语音情感识别
speech-emotion-recognition是一个开源的语音情感识别系统,基于Emo-db数据集开发。该项目支持SVM、随机森林、神经网络、CNN和LSTM等多种机器学习和深度学习模型。系统使用Python实现,提供完整的数据预处理、特征提取和模型训练工作流程。项目设计简单易用,适合研究人员和开发者进行语音情感分析的研究和应用开发。该系统可应用于客户服务、情感计算、人机交互等领域,具有模型多样化、使用灵活、易于扩展等优点。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号