Project Icon

hatespeechdata

多语言仇恨言论数据集汇总与研究资源

该项目汇集了涵盖多种语言的仇恨言论、在线辱骂和攻击性语言数据集。收录内容包括来自不同平台的文本、图像和音频数据。项目旨在为自然语言处理系统提供训练资源,以提升有害内容检测能力。此外,项目还提供关键词列表和贡献指南,为研究人员和开发者改进在线内容审核和仇恨言论检测技术提供支持。

Hate Speech Dataset Catalogue

This page catalogues datasets annotated for hate speech, online abuse, and offensive language. They may be useful for e.g. training a natural language processing system to detect this language.

The list is maintained by Leon Derczynski, Bertie Vidgen, Hannah Rose Kirk, Pica Johansson, Yi-Ling Chung, Mads Guldborg Kjeldgaard Kongsbak, Laila Sprejer, and Philine Zeinert.

We provide a list of datasets and keywords. If you would like to contribute to our catalogue or add your dataset, please see the instructions for contributing.

If you use these resources, please cite (and read!) our paper: Directions in Abusive Language Training Data: Garbage In, Garbage Out. And if you would like to find other resources for researching online hate, visit The Alan Turing Institute's Online Hate Research Hub or read The Alan Turing Institute's Reading List on Online Hate and Abuse Research.

If you're looking for a good paper on online hate training datasets (beyond our paper, of course!) then have a look at 'Resources and benchmark corpora for hate speech detection: a systematic review' by Poletto et al. in Language Resources and Evaluation.

Please send contributions via github pull request. You can do this by visiting the source code on github and clicking the edit icon (a pencil, above the text, on the right) - more details below. There's a commented-out markdown template at the top of this file. Accompanying data statements preferred for all corpora.

Datasets Table of Contents

List of datasets

Albanian

Detecting Abusive Albanian

  • Link to publication: https://arxiv.org/abs/2107.13592
  • Link to data: https://doi.org/10.6084/m9.figshare.19333298.v1
  • Task description: Hierarchical (offensive/not; untargeted/targeted; person/group/other)
  • Details of task: Detect and categorise abusive language in social media data
  • Size of dataset: 11 874
  • Percentage abusive: 13.2%
  • Language: Albanian
  • Level of annotation: Posts
  • Platform: Instagram, Youtube
  • Medium: Text
  • Reference: Nurce, E., Keci, J., Derczynski, L., 2021. Detecting Abusive Albanian. arXiv:2107.13592
  • Dataset reader: 🤗 strombergnlp/shaj

Arabic

Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language

  • Link to publication: https://arxiv.org/abs/2103.10195
  • Link to data: https://drive.google.com/file/d/1mM2vnjsy7QfUmdVUpKqHRJjZyQobhTrW/view
  • Task description: Binary (misogyny/none) and Multi-class (none, discredit, derailing, dominance, stereotyping & objectification, threat of violence, sexual harassment, damning)
  • Details of task: Introducing an Arabic Levantine Twitter dataset for Misogynistic language
  • Size of dataset: 6,603 direct tweet replies
  • Percentage abusive: 48.76%
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Hala Mulki and Bilal Ghanem. 2021. Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language. In Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 154–163, Kyiv, Ukraine (Virtual). Association for Computational Linguistics

Are They our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere

  • Link to publication: https://ieeexplore.ieee.org/document/8508247
  • Link to data: https://github.com/nuhaalbadi/Arabic_hatespeech
  • Task description: Binary (Hate, Not)
  • Details of task: Religious subcategories
  • Size of dataset: 6,136
  • Percentage abusive: 0.45
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Albadi, N., Kurdi, M. and Mishra, S., 2018. Are they Our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere. In: International Conference on Advances in Social Networks Analysis and Mining. Barcelona, Spain: IEEE, pp.69-76.

Multilingual and Multi-Aspect Hate Speech Analysis (Arabic)

  • Link to publication: https://arxiv.org/abs/1908.11049
  • Link to data: https://github.com/HKUST-KnowComp/MLMA_hate_speech
  • Task description: Detailed taxonomy with cross-cutting attributes: Hostility, Directness, Target Attribute, Target Group, How annotators felt on seeing the tweet.
  • Details of task: Gender, Sexual orientation, Religion, Disability
  • Size of dataset: 3,353
  • Percentage abusive: 0.64
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Ousidhoum, N., Lin, Z., Zhang, H., Song, Y. and Yeung, D., 2019. Multilingual and Multi-Aspect Hate Speech Analysis. ArXiv,.

L-HSAB: A Levantine Twitter Dataset for Hate Speech and Abusive Language

  • Link to publication: https://www.aclweb.org/anthology/W19-3512
  • Link to data: https://github.com/Hala-Mulki/L-HSAB-First-Arabic-Levantine-HateSpeech-Dataset
  • Task description: Ternary (Hate, Abusive, Normal)
  • Details of task: Group-directed + Person-directed
  • Size of dataset: 5,846
  • Percentage abusive: 0.38
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: Twitter
  • Medium: Text
  • Reference: Mulki, H., Haddad, H., Bechikh, C. and Alshabani, H., 2019. L-HSAB: A Levantine Twitter Dataset for Hate Speech and Abusive Language. In: Proceedings of the Third Workshop on Abusive Language Online. Florence, Italy: Association for Computational Linguistics, pp.111-118.

Abusive Language Detection on Arabic Social Media (Twitter)

Abusive Language Detection on Arabic Social Media (Al Jazeera)

  • Link to publication: https://www.aclweb.org/anthology/W17-3008
  • Link to data: http://alt.qcri.org/~hmubarak/offensive/AJCommentsClassification-CF.xlsx
  • Task description: Ternary (Obscene, Offensive but not obscene, Clean)
  • Details of task: Incivility
  • Size of dataset: 32,000
  • Percentage abusive: 0.81
  • Language: Arabic
  • Level of annotation: Posts
  • Platform: AlJazeera
  • Medium: Text
  • Reference: Mubarak, H., Darwish, K. and Magdy, W., 2017. Abusive Language Detection on Arabic Social Media. In: Proceedings of the First Workshop on Abusive Language Online. Vancouver, Canada: Association for Computational Linguistics, pp.52-56.

Dataset Construction for the Detection of Anti-Social Behaviour in Online Communication in Arabic

Bengali

Hate Speech Detection in the Bengali language: A Dataset and its Baseline Evaluation

  • Link to publication: https://arxiv.org/pdf/2012.09686.pdf
  • Link to data: https://www.kaggle.com/naurosromim/bengali-hate-speech-dataset
  • Task description: Binary (hateful, not)
  • Details of task: Several categories: sports, entertainment, crime, religion, politics, celebrity and meme
  • Size of dataset: 30,000
  • Percentage abusive: 0.33
  • Language: Bengali
  • Level of annotation: Posts
  • Platform: Youtube and Facebook
  • Medium: Text
  • Reference: Romim, N., Ahmed, M., Talukder, H., & Islam, M. S. (2021). Hate speech detection in the bengali language: A dataset and its baseline evaluation. In Proceedings of International Joint Conference on Advances in Computational Intelligence (pp. 457-468). Springer, Singapore.

Chinese

SWSR: A Chinese Dataset and Lexicon for Online Sexism Detection

  • Link to publication: https://www.sciencedirect.com/science/article/abs/pii/S2468696421000604#fn1
  • Link to data: https://doi.org/10.5281/zenodo.4773875
  • Task description: Binary (Sexist, Non-sexist), Categories of sexism (Stereotype based on Appearance, Stereotype based on Cultural Background, MicroAggression, and Sexual Offense), Target of sexism (Individual or Generic)
  • Details of task: Sexism detection on social media in Chinese
  • Size of dataset: 8,969 comments from 1,527 weibos
  • Percentage abusive: 34.5%
  • Language: Chinese
  • Level of annotation: Posts
  • Platform: Sina Weibo
  • Medium: Text
  • Reference: Aiqi Jiang, Xiaohan Yang, Yang Liu, Arkaitz Zubiaga, SWSR: A Chinese dataset and lexicon for online sexism detection, Online Social Networks and Media, Volume 27, 2022, 100182, ISSN 2468-6964.

Croatian

CoRAL: a Context-aware Croatian Abusive Language Dataset

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号