Project Icon

n-levels-of-rag

RAG应用开发全面指南 从入门到精通

本项目是一个全面的RAG应用开发指南,涵盖基础到高级的多个层次。内容包括核心概念讲解、高级技术介绍、可观察性实践、评估方法和性能优化策略等。适合各层次开发者学习,提供实用知识助力RAG应用开发。

rag-stack - 基于RAG技术的企业级智能问答平台
GithubRAGstack企业知识库向量数据库开源LLM开源项目检索增强生成
RAGstack是一个基于检索增强生成(RAG)技术的企业级智能问答平台。该项目支持Llama 2、Falcon和GPT4All等开源大语言模型,利用Qdrant向量数据库实现高效文档检索。RAGstack提供简洁的服务器和用户界面,支持PDF文档上传和智能问答。系统可在本地运行,也可轻松部署到各大主流云平台,为企业提供安全可控的私有化知识问答解决方案。
super-rag - 提升AI应用性能的高效RAG流水线工具
GithubREST APISuper-Rag云端API人工智能开源项目文档处理
Super-Rag为AI应用提供了支持多种文档格式与向量数据库的高效RAG流水线。包含生产就绪REST API,支持自定义数据分割,多种编码模式,及代码解释器模式,适于解决计算性问题与答疑,并通过唯一ID高效进行会话管理。
AutoRAG - 自动优化检索增强生成流程的开源工具
AutoRAGGithubRAG优化开源项目数据处理自动化评估部署
AutoRAG是一个开源的检索增强生成(RAG)自动优化工具,专门为特定数据和用例寻找最佳RAG流程。该工具支持自动评估多种RAG模块组合,简化了最优方案的发现过程。AutoRAG提供简洁的代码接口和命令行操作,方便用户快速评估、部署和共享优化后的RAG流程。此外,AutoRAG还集成了多种评估指标、支持模块、可视化仪表板和Web界面,使RAG技术的应用更加便捷高效。
llm-applications - 构建基于RAG的LLM应用的教程
AnyscaleGithubOpenAIRAG-based LLM开源项目性能优化生产
本教程详细展示如何从零基础开发和部署基于检索增强生成(RAG)的LLM应用程序,并使用Anyscale技术优化其性能。揭示如何综合开发、调整各关键组件、评估性能,并高效地进行服务上线,确保应用的卓越性能和极致的扩展性。
ragflow - 基于深度文档理解的高效RAG工作流引擎
GithubLLMRAGFlow兼容异构数据源开源项目深度文档理解自动化RAG工作流程
RAGFlow是一个基于深度文档理解的开源RAG引擎,适用于各种规模的企业。结合大型语言模型,它提供可靠的问答功能和可信的引用。RAGFlow支持多种数据格式,包括文本、图片和音频文件,并且兼容本地和远程LLM,提供自动化、无缝集成的RAG工作流,便于通过直观的API进行业务整合。
graph-rag - 自动生成知识图谱和文档网络以增强RAG性能
GithubKnowledge Graph RAGRAG开源项目搜索文档网络知识图谱
graph-rag项目旨在提升检索增强生成(RAG)的性能。它自动从文档中提取实体和关系,构建知识图谱和文档关联网络。这些图谱可用于搜索相关实体或查找相互关联的文档,增强大型语言模型的上下文信息。该项目在处理医疗等专业领域文档时尤为有效,能提高信息检索和知识推理效率。
CRUD_RAG - 全面评估中文检索增强生成系统的基准测试
CRUD-RAGGithub中文基准测试大语言模型开源项目检索增强生成评估系统
CRUD_RAG是一个全面的中文检索增强生成(RAG)系统评估基准。该项目包含36166个测试样本,覆盖CRUD操作,支持多种评估指标。CRUD_RAG提供原生中文数据集、评估任务和基线模型,并具备一键式评估功能。这一工具可助力研究人员和开发者全面评估和优化中文RAG系统性能,推动中文自然语言处理技术的进步。
rags - 使用自然语言从数据源创建RAG管道
GithubOpenAIRAGsStreamlit开源项目数据管道自然语言处理
RAGs是一个基于Streamlit的应用程序,使用自然语言从数据源创建RAG管道。用户可以描述任务和参数,查看和修改生成的参数,并通过RAG代理查询数据。项目支持多种LLM和嵌入模型,默认使用OpenAI构建代理。该应用程序提供了一个标准的聊天界面,能够通过Top-K向量搜索或总结功能满足查询需求。了解更多关于安装和配置的信息,请访问GitHub页面或加入Discord社区。
ragna - 高效灵活的RAG编排框架简化AI应用开发
GithubRAG编排框架Ragna开源项目文档检索自然语言处理
Ragna是一个RAG(检索增强生成)编排框架,旨在简化AI应用开发过程。该框架支持Python API、REST API和Web应用界面,方便开发者构建和部署基于RAG的智能系统。Ragna的设计注重灵活性和可扩展性,适应多种AI应用场景。该框架有助于加速智能解决方案的开发,促进AI技术在各领域的应用。
R2R - 在生产环境中构建、扩展和管理面向用户的检索增强生成应用程序
GithubR2RRetrieval-Augmented Generation多模态支持开源项目混合搜索知识图谱
R2R旨在弥合本地LLM实验与可扩展的生产级检索增强生成(RAG)应用之间的差距。R2R提供最新的RAG技术,基于RESTful API构建,使用简便。其主要功能包括多模态支持、混合搜索、图形RAG、应用管理、可观察性、可配置性和扩展性。通过R2R仪表板用户界面,可直观管理和分析RAG引擎性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号