Project Icon

BirdNET-Analyzer

基于AI的鸟类声音识别和生物多样性监测系统

BirdNET-Analyzer是一个开源的人工智能系统,用于自动处理科学音频数据和鸟类识别。它可分析大量音频或单个文件,识别全球6000多种鸟类声音。由康奈尔大学鸟类学实验室开发,为研究人员提供便捷的声学分析工具,无需编程基础。支持多操作系统,配备图形界面,操作简单。该系统在生物多样性监测和鸟类研究领域具有广泛应用前景。

//*********************************************** //***************** SETTINGS ******************** //***********************************************

:doctype: book :use-link-attrs: :linkattrs:

// Github Icons ifdef::env-github[] :tip-caption: :bulb: :note-caption: :information_source: :important-caption: :heavy_exclamation_mark: :caution-caption: :fire: :warning-caption: :warning: endif::[]

// Table of Contents :toc: :toclevels: 2 :toc-title: :toc-placement!: :sectanchors:

// Numbered sections :sectnums: :sectnumlevels: 2

// Links :cc-by-nc-sa: http://creativecommons.org/licenses/by-nc-sa/4.0/

//************* END OF SETTINGS ****************** //************************************************

// Header ++++

BirdNET-Analyzer

Automated scientific audio data processing and bird ID.

++++

// Badges :license-badge: https://badgen.net/badge/License/CC-BY-NC-SA%204.0/green :os-badge: https://badgen.net/badge/OS/Linux%2C%20Windows%2C%20macOS/blue :species-badge: https://badgen.net/badge/Species/6512/blue :downloads-badge: https://www-user.tu-chemnitz.de/~johau/birdnet_total_downloads_badge.php :twitter-badge: https://img.shields.io/twitter/follow/BirdNET_App :reddit-badge: https://img.shields.io/reddit/subreddit-subscribers/BirdNET_Analyzer?style=social // Mail icon from FontAwesome :mail-badge: https://img.shields.io/badge/Mail us!-ccb--birdnet%40cornell.edu-yellow.svg?style=social&logo=

image:{license-badge}[CC BY-NC-SA 4.0, link={cc-by-nc-sa}] image:{os-badge}[Supported OS, link=""] image:{species-badge}[Number of species, link=""] image:{downloads-badge}[Downloads, link=""]

[.text-center] image:{mail-badge}[Email, link=mailto:ccb-birdnet@cornell.edu, height=25] image:https://img.shields.io/twitter/follow/BirdNET_App[Twitter Follow, link=https://twitter.com/BirdNET_App, height=25] image:{reddit-badge}[Subreddit subscribers, link="https://reddit.com/r/BirdNET_Analyzer", height=25]

++++

++++

[discrete] == Introduction

This repo contains BirdNET models and scripts for processing large amounts of audio data or single audio files. This is the most advanced version of BirdNET for acoustic analyses and we will keep this repository up-to-date with new models and improved interfaces to enable scientists with no CS background to run the analysis.

https://github.com/kahst/BirdNET-Analyzer/releases/download/v1.2.0/BirdNET-Analyzer-GUI-1.2.0-win.exe[*Click here to download the Windows installer*] and follow the https://github.com/kahst/BirdNET-Analyzer#setup-windows[setup instructions].

https://tuc.cloud/index.php/s/2TX59Qda2X92Ppr/download/BirdNET_GLOBAL_6K_V2.4_Model_Raven.zip[*Download the newest Raven model here*] and follow the https://github.com/kahst/BirdNET-Analyzer#setup-raven-pro[setup instructions].

Feel free to use BirdNET for your acoustic analyses and research. If you do, please cite as:


@article{kahl2021birdnet, title={BirdNET: A deep learning solution for avian diversity monitoring}, author={Kahl, Stefan and Wood, Connor M and Eibl, Maximilian and Klinck, Holger}, journal={Ecological Informatics}, volume={61}, pages={101236}, year={2021}, publisher={Elsevier} }

This work is licensed under a {cc-by-nc-sa}[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License].

[discrete] == About

Developed by the https://www.birds.cornell.edu/ccb/[K. Lisa Yang Center for Conservation Bioacoustics] at the https://www.birds.cornell.edu/home[Cornell Lab of Ornithology] in collaboration with https://www.tu-chemnitz.de/index.html.en[Chemnitz University of Technology].

Go to https://birdnet.cornell.edu to learn more about the project.

Want to use BirdNET to analyze a large dataset? Don't hesitate to contact us: ccb-birdnet@cornell.edu

Follow us on Twitter https://twitter.com/BirdNET_App[@BirdNET_App]

We also have a discussion forum on https://reddit.com/r/BirdNET_Analyzer[Reddit] if you have a general question or just want to chat.

Have a question, remark, or feature request? Please start a new issue thread to let us know. Feel free to submit a pull request.

[discrete] == Contents toc::[]

== Usage guide

This document provides instructions for downloading and installing the GUI, and conducting some of the most common types of analyses. Within the document, a link is provided to download example sound files that can be used for practice.

Download the PDF here: https://zenodo.org/records/8357176[BirdNET-Analyzer Usage Guide]

Watch our presentation on how to use BirdNET-Analyzer to train your own models: https://youtu.be/HuEZGIPeyq0[BirdNET - BioacousTalks at YouTube]

== Showroom

BirdNET powers a number of fantastic community projects dedicated to bird song identification, all of which use models from this repository. These are some highlights, make sure to check them out!

.Community projects [cols=",", options="header"] |=== | Project | Description

| image:https://tuc.cloud/index.php/s/cDqtQxo8yMRkNYP/download/logo_box_loggerhead.png[HaikuBox,300,link=https://haikubox.com] | HaikuBox + Once connected to your WiFi, Haikubox will listen for birds 24/7. When BirdNET finds a match between its thousands of labeled sounds and the birdsong in your yard, it identifies the bird species and shares a three-second audio clip to the Haikubox website and smartphone app.

Learn more at: https://haikubox.com[HaikuBox.com]

| image:https://tuc.cloud/index.php/s/WKCZoE9WSjimDoe/download/logo_box_birdnet-pi.png[BirdNET-PI,300,link=https://birdnetpi.com] | BirdNET-Pi + Built on the TFLite version of BirdNET, this project uses pre-built TFLite binaries for Raspberry Pi to run on-device sound analyses. It is able to recognize bird sounds from a USB sound card in realtime and share its data with the rest of the world.

Note: You can find the most up-to-date version of BirdNET-PI at https://github.com/Nachtzuster/BirdNET-Pi[github.com/Nachtzuster/BirdNET-Pi]

Learn more at: https://birdnetpi.com[BirdNETPi.com]

| image:https://tuc.cloud/index.php/s/jDtyG9W36WwKpbR/download/logo_box_birdweather.png[BirdWeather,300,link=https://app.birdweather.com] | BirdWeather + This site was built to be a living library of bird vocalizations. Using the BirdNET artificial neural network, BirdWeather is continuously listening to over 1,000 active stations around the world in real-time.

Learn more at: https://app.birdweather.com[BirdWeather.com]

| image:https://tuc.cloud/index.php/s/kqT7GXXzfDs3NyA/download/birdnetlib-logo.png[birdnetlib,300,link=https://joeweiss.github.io/birdnetlib/] | birdnetlib + A python api for BirdNET-Analyzer and BirdNET-Lite. birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Learn more at: https://joeweiss.github.io/birdnetlib/[github.io/birdnetlib]

| image:https://tuc.cloud/index.php/s/zpNkXJq7je3BKNE/download/logo_box_ecopi_bird.png[ecoPI:Bird,300,link=https://oekofor.netlify.app/en/portfolio/ecopi-bird_en/] | ecoPi:Bird + The ecoPi:Bird is a device for automated acoustic recordings of bird songs and calls, with a self-sufficient power supply. It facilitates economical long-term monitoring, implemented with minimal personal requirements.

Learn more at: https://oekofor.netlify.app/en/portfolio/ecopi-bird_en/[oekofor.netlify.app]

| image:https://tuc.cloud/index.php/s/HQiPxG2rKbmDb64/download/dawn_chorus_logo.png[DawnChorus,300,link=https://dawn-chorus.org/en/] | Dawn Chorus + Dawn Chorus invites global participation to record bird sounds for biodiversity research, art, and raising awareness. This project aims to sharpen our senses and creativity by connecting us more deeply with the wonders of nature.

Learn more at: https://dawn-chorus.org/en/[dawn-chorus.org]

| image:https://tuc.cloud/index.php/s/M27nZ4LmNaNEKMg/download/chirpity_logo.png[Chirpity,300,link=https://chirpity.mattkirkland.co.uk] | Chirpity + Discover the wonders of bird identification with Chirpity, a desktop application powered by cutting-edge Machine Learning. With the option to choose between BirdNET or the native Chirpity model, finely tuned for Nocturnal Flight Calls, you have the flexibility to tailor your analysis to your specific needs. Perfect for enthusiasts and researchers alike, Chirpity is particularly well-suited for Nocmig and other extensive field recordings. Chirpity is available on both Windows and Mac platforms.

Learn more at: https://chirpity.mattkirkland.co.uk[chirpity.mattkirkland.co.uk]

| image:https://raw.githubusercontent.com/tphakala/birdnet-go/main/doc/BirdNET-Go-logo.webp[Go-BirdNET,300,link=https://github.com/tphakala/go-birdnet] | Go-BirdNET + Go-BirdNET is an application inspired by BirdNET-Analyzer. While the original BirdNET is based on Python, Go-BirdNET is built using Golang, aiming for simplified deployment across multiple platforms, from Windows PCs to single board computers like Raspberry Pi.

Learn more at: https://github.com/tphakala/go-birdnet[github.com/tphakala/go-birdnet]

| image:https://github.com/woheller69/whoBIRD/blob/master/fastlane/metadata/android/en-US/images/icon.png[whoBIRD,300,link=https://github.com/woheller69/whoBIRD] | whoBIRD + whoBIRD empowers you to identify birds anywhere, anytime, without an internet connection. Built upon the TFLite version of BirdNET, this Android application harnesses the power of machine learning to recognize birds directly on your device.

Learn more at: https://github.com/woheller69/whoBIRD[whoBIRD]

| image:https://github.com/ssciwr/faunanet/blob/master/faunanet_logo.png[faunanet,300,link=https://github.com/ssciwr/faunanet] | faunanet + faunanet provides a platform for bioacoustics research projects and is an extension of Birdnet-Analyzer based on birdnetlib. faunanet is written in pure Python and is developed by the Scientific Software Center at the University of Heidelberg, Germany.

Learn more at: https://github.com/ssciwr/faunanet[faunanet] |===

Other cool projects:

Working on a cool project that uses BirdNET? Let us know and we can feature your project here.

== Projects map

We have created an interactive map of projects that use BirdNET. If you are working on a project that uses BirdNET, please let us know https://github.com/kahst/BirdNET-Analyzer/issues/221[here] and we can add it to the map.

You can access the map here: https://kahst.github.io/BirdNET-Analyzer/projects.html[Open projects map]

== Model version update

[discrete] ==== V2.4, June 2023

  • more than 6,000 species worldwide
  • covers frequencies from 0 Hz to 15 kHz with two-channel spectrogram (one for low and one for high frequencies)
  • 0.826 GFLOPs, 50.5 MB as FP32
  • enhanced and optimized metadata model
  • global selection of species (birds and non-birds) with 6,522 classes (incl. 10 non-event classes)

You can find a list of previous versions here: https://github.com/kahst/BirdNET-Analyzer/tree/main/checkpoints[BirdNET-Analyzer Model Version History]

[discrete] ==== Species range model V2.4 - V2, Jan 2024

== Technical Details

Model V2.4 uses the following settings:

  • 48 kHz sampling rate (we up- and downsample automatically and can deal with artifacts from lower sampling rates)
  • we compute 2 mel spectrograms as input for the convolutional neural network: ** first one has fmin = 0 Hz and fmax = 3000; nfft = 2048; hop size = 278; 96 mel bins ** second one has fmin = 500 Hz and fmax = 15 kHz; nfft = 1024; hop size = 280; 96 mel bins
  • both spectrograms have a final resolution of 96x511 pixels
  • raw audio will be normalized between -1 and 1 before spectrogram conversion
  • we use non-linear magnitude scaling as mentioned in http://ceur-ws.org/Vol-2125/paper_181.pdf[Schlüter 2018]
  • V2.4 uses an EfficienNetB0-like backbone with a final embedding size of 1024
  • See https://github.com/kahst/BirdNET-Analyzer/issues/177#issuecomment-1772538736[this comment] for more details

== Setup === Setup (Raven Pro)

If you want to analyze audio files without any additional coding or package install, you can now use https://ravensoundsoftware.com/software/raven-pro/[Raven Pro software] to run BirdNET models. After download, BirdNET is available through the new "Learning detector" feature in Raven Pro. For more information on how to use this feature, please visit the https://ravensoundsoftware.com/article-categories/learning-detector/[Raven Pro Knowledge

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号