【LLMs 入门实战系列】
【LLMs 入门实战系列】交流群 (注:人满 可 添加 小编wx:yzyykm666 加群!)
- 【LLMs 入门实战系列】
- 第一层 LLMs to Natural Language Processing (NLP)
- 第九层 LLMs to interview
- 第八层 LLMs to Inference acceleration
- 第二层 LLMs to Parameter Efficient Fine-Tuning (PEFT)
- 第三层 LLMs to Artifact
- 第四层 LLMs to Text-to-Image
- 第五层 LLMs to Visual Question Answering (VQA)
- 第六层 LLMs to Automatic Speech Recognition (ASR)
- 第七层 LLMs to Text To Speech (TTS)
- LLaMA 衍生物系列
- 知识体系
- 加入学习群
- 参考
第一层 LLMs to Natural Language Processing (NLP)
第一重 ChatGLM-6B 系列
ChatGLM2-6B
-
【ChatGLM2-6B入门】清华大学开源中文版ChatGLM-6B模型学习与实战
- 论文名称:ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型
- 论文地址:
- Github 代码:https://github.com/THUDM/ChatGLM2-6B
- 动机:在主要评估LLM模型中文能力的 C-Eval 榜单中,截至6月25日 ChatGLM2 模型以 71.1 的分数位居 Rank 0 ,ChatGLM2-6B 模型以 51.7 的分数位居 Rank 6,是榜单上排名最高的开源模型。
- 介绍:ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:
- 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
- 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
- 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
- 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。如果您发现我们的开源模型对您的业务有用,我们欢迎您对下一代模型 ChatGLM3 研发的捐赠。
-
【关于 ChatGLM2 + LoRA 进行finetune 】那些你不知道的事
- 论文名称:ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型
- 论文地址:
- Github 代码:https://github.com/THUDM/ChatGLM2-6B
- 介绍:本教程主要介绍对于 ChatGLM2-6B 模型基于 LoRA 进行finetune。
-
【LLMs 入门实战 】基于 🤗PEFT 的高效 🤖ChatGLM2-6B 微调
- 微调方式:
- ChatGLM2-6B Freeze 微调:Fine-tuning the MLPs in the last n blocks of the model.
- ChatGLM2-6B P-Tuning V2 微调:Fine-tuning the prefix encoder of the model.
- ChatGLM2-6B LoRA 微调:Fine-tuning the low-rank adapters of the model.
- 微调方式:
-
【LLMs 入门实战】基于 🤗QLoRA 的高效 🤖ChatGLM2-6B 微调
- 介绍:本项目使用 https://github.com/huggingface/peft 库,实现了 ChatGLM2-6B 模型4bit的 QLoRA 高效微调,可以在一张RTX3060上完成全部微调过程。
ChatGLM3
-
- 论文名称:ChatGLM3
- Github 代码:https://github.com/THUDM/ChatGLM3
- 模型地址:
- huggingface:https://huggingface.co/THUDM/chatglm3-6b
- modelscope:https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary
- 动机:2023年10月26日,由中国计算机学会主办的2023中国计算机大会(CNCC)正式开幕,据了解,智谱AI于27日论坛上推出了全自研的第三代基座大模型ChatGLM3及相关系列产品,这也是智谱AI继推出千亿基座的对话模型ChatGLM和ChatGLM2之后的又一次重大突破。
- 介绍:ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
- 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。
- 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
- 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。
-
【LLMs 入门实战】 ChatGLM3 模型微调学习与实战
- 论文名称:ChatGLM3
- Github 代码:https://github.com/THUDM/ChatGLM3
- 模型地址:
- huggingface:https://huggingface.co/THUDM/chatglm3-6b