Project Icon

scikit-lego

为scikit-learn提供自定义扩展的开源库

scikit-lego是一个开源Python库,为scikit-learn提供自定义转换器、指标和模型。该项目最初由荷兰多家公司合作开发,现已获得全球贡献。scikit-lego严格遵循scikit-learn标准,提供高质量代码和测试。它包含多种新特性,如自定义数据集、pandas工具、线性模型、朴素贝叶斯、混合模型、元估计器、预处理工具、模型选择方法和评估指标,旨在增强机器学习工作流程的灵活性和功能性。

scikit-learn - Python机器学习的核心工具库
GithubPythonscikit-learn开源项目数据科学机器学习
scikit-learn是基于SciPy构建的Python机器学习库,提供高效的数据挖掘和分析工具。支持分类、回归、聚类等多种机器学习任务,自2007年启动以来由志愿者维护,已成为广受欢迎的开源项目。其特点包括易用性、高性能和完善的文档,在学术和工业领域得到广泛应用。
agentlego - 多模态工具扩展及集成的开源库
AgentLegoGithub图像生成大语言模型开源项目视觉感知语音处理
AgentLego是一个提供多种工具API的开源库,旨在增强基于大语言模型的代理功能。它支持多模态工具,如视觉感知、图像生成与编辑、语音处理等,且易于集成到LangChain、Transformers Agents和Lagent等框架中。同时,AgentLego支持远程访问和工具服务,适用于需要大型机器学习模型或特定环境的应用。
awesome-lego-machine-learning - 乐高积木领域机器学习应用资源精选
GithubLEGO分拣机开源项目数据集机器学习零件分类
这个精选列表汇集了乐高积木领域的机器学习应用和资源。内容涵盖零件分类、自动分拣、数据集、渲染技术等多个方面,包括应用程序、开源项目、学术论文和工具。列表为乐高爱好者和机器学习研究者提供了丰富参考,无论是构建分拣系统还是研究模型生成,都能找到有价值的信息。
imbalanced-learn - Python库解决机器学习不平衡数据问题
Githubimbalanced-learnscikit-learn开源项目数据不平衡机器学习重采样技术
imbalanced-learn是一个Python库,专门解决机器学习中的数据不平衡问题。它提供了多种重采样技术,如过采样、欠采样和组合方法,以获得更公平和稳健的模型。该库与scikit-learn完全兼容,使用简单,并提供详细文档和示例。作为scikit-learn-contrib项目的一部分,imbalanced-learn为数据科学家和机器学习工程师提供了处理不平衡数据集的有力工具。
scikeras - Keras与Scikit-Learn的无缝集成工具
GithubKerasPythonSciKerasScikit-Learn开源项目机器学习
SciKeras是一个开源项目,旨在为Keras模型提供Scikit-Learn兼容的包装器。作为tf.keras.wrappers.scikit_learn的继任者,SciKeras保持API兼容性的同时,提供了更多功能。该项目支持TensorFlow,可通过pip轻松安装。SciKeras不仅提供详细文档,还有完整的迁移指南,方便用户从原有框架过渡。项目基于scikit-learn 1.4.1post1及以上版本和Keras 3.2.0及以上版本,为机器学习实践者提供了一个强大的集成工具。
skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
tslearn - Python时间序列分析机器学习库
GithubPython库tslearn开源项目数据预处理时间序列分析机器学习
tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。
mlxtend - Python机器学习日常任务扩展库
GithubPython库mlxtend开源软件开源项目数据科学机器学习
mlxtend扩展了Python的机器学习功能,专注于提供数据科学日常任务中的实用工具。库中包含多种分类器、集成方法和决策区域可视化功能。它支持pip和conda安装,适合机器学习研究和实践。mlxtend提供详细文档和示例,有助于简化数据科学工作流程。
scikit-opt - Python群体智能优化算法库
GithubPython库scikit-opt优化算法开源项目智能算法遗传算法
scikit-opt是一个Python优化库,实现了多种群体智能算法,如遗传算法、粒子群优化和模拟退火。该库支持用户自定义函数、GPU加速和多种加速方式,可用于解决各类优化问题。scikit-opt具有易用性强、功能丰富的特点,适合数据科学家和研究人员使用。
sk2torch - 实现scikit-learn模型到PyTorch模块的转换
GithubPyTorchTorchScriptscikit-learnsk2torch开源项目模型转换
sk2torch是一个开源工具,用于将scikit-learn模型转换为PyTorch模块。它解决了GPU加速推理、模型序列化和梯度计算等问题。sk2torch支持多种scikit-learn模型,使机器学习从业者能够利用PyTorch的GPU加速、TorchScript序列化和反向传播功能。这个项目为scikit-learn用户提供了更多的灵活性和性能优化选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号