Project Icon

konva

HTML5 Canvas绘图框架 支持高性能动画与交互

Konva是一个开源的HTML5 Canvas JavaScript框架,为桌面和移动应用提供高性能的图形渲染和交互功能。它支持动画、过渡效果、节点嵌套、图层管理、滤镜应用、缓存机制和事件处理。开发者可以在舞台上绘制和操作各种形状,即使处理数千个图形元素也能保持高效性能。Konva提供详细文档和教程,支持多种加载方式,并有活跃的社区支持。

Konva logo

Konva

Financial Contributors on Open Collective npm version Build Status Build StatusCDNJS version

Konva is an HTML5 Canvas JavaScript framework that enables high performance animations, transitions, node nesting, layering, filtering, caching, event handling for desktop and mobile applications, and much more.

You can draw things onto the stage, add event listeners to them, move them, scale them, and rotate them independently from other shapes to support high performance animations, even if your application uses thousands of shapes. Served hot with a side of awesomeness.

This repository began as a GitHub fork of ericdrowell/KineticJS.

Quick Look

<script src="https://unpkg.com/konva@9/konva.min.js"></script>
<div id="container"></div>
<script>
  var stage = new Konva.Stage({
    container: 'container',
    width: window.innerWidth,
    height: window.innerHeight,
  });

  // add canvas element
  var layer = new Konva.Layer();
  stage.add(layer);

  // create shape
  var box = new Konva.Rect({
    x: 50,
    y: 50,
    width: 100,
    height: 50,
    fill: '#00D2FF',
    stroke: 'black',
    strokeWidth: 4,
    draggable: true,
  });
  layer.add(box);

  // add cursor styling
  box.on('mouseover', function () {
    document.body.style.cursor = 'pointer';
  });
  box.on('mouseout', function () {
    document.body.style.cursor = 'default';
  });
</script>

Browsers support

Konva works in all modern mobile and desktop browsers. A browser need to be capable to run javascript code from ES2015 spec. For older browsers you may need polyfills for missing functions.

At the current moment Konva doesn't work in IE11 directly. To make it work you just need to provide some polyfills such as Array.prototype.find, String.prototype.trimLeft, String.prototype.trimRight, Array.from.

Debugging

The Chrome inspector simply shows the canvas element. To see the Konva objects and their details, install the konva-dev extension at https://github.com/konvajs/konva-devtool.

Loading and installing Konva

Konva supports UMD loading. So you can use all possible variants to load the framework into your project:

Load Konva via classical <script> tag from CDN:

<script src="https://unpkg.com/konva@9/konva.min.js"></script>

Install with npm:

npm install konva --save
// The modern way (e.g. an ES6-style import for webpack, parcel)
import Konva from 'konva';

Typescript usage

Add DOM definitions into your tsconfig.json:

{
  "compilerOptions": {
    "lib": [
        "es6",
        "dom"
    ]
  }
}

3 Minimal bundle

import Konva from 'konva/lib/Core';
// Now you have a Konva object with Stage, Layer, FastLayer, Group, Shape and some additional utils function.
// Also core currently already have support for drag&drop and animations.
// BUT there are no shapes (rect, circle, etc), no filters.

// but you can simply add anything you need:
import { Rect } from 'konva/lib/shapes/Rect';
// importing a shape will automatically inject it into Konva object

var rect1 = new Rect();
// or:
var shape = new Konva.Rect();

// for filters you can use this:
import { Blur } from 'konva/lib/filters/Blur';

4 NodeJS env

In order to run konva in nodejs environment you also need to install canvas package manually. Konva will use it for 2d canvas API.

npm install konva canvas

Then you can use the same Konva API and all Konva demos will work just fine. You just don't need to use container attribute in your stage.

import Konva from 'konva';

const stage = new Konva.Stage({
  width: 500,
  height: 500,
});
// then all regular Konva code will work

Backers

https://simpleshow.com https://www.notably.ai/

Change log

See CHANGELOG.md.

Building the Konva Framework

To make a full build run npm run build. The command will compile all typescript files, combine then into one bundle and run minifier.

Testing

Konva uses Mocha for testing.

  • If you need run test only one time run npm run test.
  • While developing it is easy to use npm start. Just run it and go to http://localhost:1234/unit-tests.html. The watcher will rebuild the bundle on any change.

Konva is covered with hundreds of tests and well over a thousand assertions. Konva uses TDD (test driven development) which means that every new feature or bug fix is accompanied with at least one new test.

Generate documentation

Run npx gulp api which will build the documentation files and place them in the api folder.

Pull Requests

I'd be happy to review any pull requests that may better the Konva project, in particular if you have a bug fix, enhancement, or a new shape (see src/shapes for examples). Before doing so, please first make sure that all of the tests pass (npm run test).

Contributors

Financial Contributors

Become a financial contributor and help us sustain our community. [Contribute]

Individuals

Organizations

Support this project with your organization. Your logo will show up here with a link to your website. [Contribute]

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号