Project Icon

CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k

具备零样本学习与多语言支持的图像模型

该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。

ViT-B-32__openai - CLIP模型的ONNX导出版本用于图像和文本嵌入生成
CLIPGithubHuggingfaceImmich图像编码器开源项目文本编码器模型自托管照片库
ViT-B-32__openai项目是CLIP模型的ONNX导出版本,将视觉和文本编码器分离为独立模型。这种设计适用于生成图像和文本嵌入,特别针对Immich自托管照片库。该项目可用于处理大量图像和文本数据,有助于改进图像检索和跨模态搜索功能。
Long-CLIP - CLIP模型长文本处理能力升级 显著提升图像检索效果
AI模型CLIPGithubLong-CLIP开源项目文本-图像检索零样本分类
Long-CLIP项目将CLIP模型的最大输入长度从77扩展到248,大幅提升了长文本图像检索性能。在长标题文本-图像检索任务中,R@5指标提高20%;传统文本-图像检索提升6%。这一改进可直接应用于需要长文本处理能力的各类任务,为图像检索和生成领域带来显著进展。
vit_large_patch14_clip_336.openai - 通过CLIP模型探索计算机视觉鲁棒性
CLIPGithubHuggingfaceOpenAI偏见开源项目数据集模型计算机视觉
OpenAI开发的CLIP模型通过ViT-L/14 (336x336)架构提高视觉任务的鲁棒性,专注于零样本图像分类,供研究人员深入探索。这个模型针对英语场景,其数据主要源自发达国家的互联网用户,目前不建议用于商用部署,但在学术界具备多学科研究的重要价值。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 - ConvNeXt大型图像分类模型 LAION-2B预训练 ImageNet微调
ConvNeXtGithubHuggingfaceImageNetLAION-2Btimm图像分类开源项目模型
ConvNeXt大型图像分类模型采用CLIP方法在LAION-2B数据集上预训练,并在ImageNet-12k和ImageNet-1k上微调。模型包含2亿参数,320x320输入下top-1准确率达87.968%。支持图像分类、特征提取和嵌入等任务,可应用于多种计算机视觉场景。
CLIP-ViT-B-32-DataComp.XL-s13B-b90K - 基于DataComp-1B训练的CLIP图像分类模型
CLIPDataCompGithubHuggingface人工智能图像分类开源项目机器学习模型
CLIP ViT-B/32是一个使用DataComp-1B数据集训练的图像分类模型,在ImageNet-1k测试中达到72.7%零样本分类准确率。模型支持图像分类、图像文本检索等功能,主要面向多模态机器学习研究使用。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
ViT-B-16-SigLIP-256 - WebLI数据集训练的SigLIP图像-文本对比学习模型
GithubHuggingfaceSigLIPWebLI图像分类图像文本对比开源项目模型模型使用
ViT-B-16-SigLIP-256是基于WebLI数据集训练的SigLIP模型,支持零样本图像分类。该模型兼容OpenCLIP和timm库,通过对比学习生成图像和文本特征表示。它能够计算图像与文本标签的相似度,适用于灵活的图像分类和检索应用。SigLIP采用Sigmoid损失函数进行语言-图像预训练,提高了模型性能。
DFN2B-CLIP-ViT-L-14 - 基于CLIP架构的大规模数据集训练图像识别模型
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN2B-CLIP-ViT-L-14是一个基于CLIP架构的图像识别模型,采用数据过滤网络从128亿图像-文本对中筛选20亿高质量样本进行训练。该模型在多个基准测试中平均准确率达66.86%,可用于零样本图像分类等任务。模型提供OpenCLIP接口,便于开发者使用。DFN2B-CLIP-ViT-L-14体现了大规模数据集和先进算法在计算机视觉领域的应用,为图像理解提供有力支持。
japanese-clip-vit-b-16 - 日语CLIP模型实现跨模态文本图像语义匹配
CLIPGithubHuggingfaceViT-B/16japanese-clip图像识别开源项目模型深度学习
rinna公司开发的日语CLIP模型采用ViT-B/16 Transformer架构,通过CC12M数据集的日语翻译版本训练而成。该模型实现了日语文本与图像的跨模态理解和语义匹配,提供简洁的API接口,适用于图像检索和跨模态搜索等场景。作为Apache 2.0许可的开源项目,它为日语视觉语言处理领域提供了实用的基础工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号