Project Icon

CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg

基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率

CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。

convnextv2_huge.fcmae_ft_in22k_in1k_512 - ConvNeXt-V2高效的图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型预训练特征提取
ConvNeXt-V2模型在全卷积掩码自动编码器框架下进行预训练,并在ImageNet-22k和ImageNet-1k数据集上微调,提升了图像分类和特征提取的效率。模型拥有660.3M参数,处理512x512图像,适合复杂计算需求。支持图像分类、特征图提取和图像嵌入,确保高准确率和多样化应用,结合timm库简化操作,适用于研究和工业应用。
CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k - LAION-2B预训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNetLAION-2BVision Transformer图像分类开源项目模型深度学习
该模型基于Vision Transformer架构,在LAION-2B数据集上预训练,随后在ImageNet-12k和ImageNet-1k上微调。模型接受384x384像素的输入图像,包含8690万个参数。除图像分类外,还可用于生成图像特征嵌入。通过timm框架实现,提供灵活配置和简便使用,适用于多种计算机视觉任务。
clip-vit-base-patch16 - CLIP-ViT:基于Transformers的零样本图像分类模型
GithubHuggingfaceONNXTransformers.js图像分类开源项目文本嵌入模型视觉嵌入
clip-vit-base-patch16是OpenAI CLIP模型的一个变种,专注于零样本图像分类任务。这个模型使用ONNX格式的权重,可与Transformers.js库无缝集成,方便在Web环境中应用。它不仅提供了易用的pipeline API用于图像分类,还支持独立的文本和图像嵌入计算功能。该模型在处理各种图像分析和跨模态任务时,能够在性能和计算效率之间保持良好平衡。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
convnext_small.fb_in22k_ft_in1k_384 - ConvNeXt模型提升图像分类精度的预训练与微调方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型比较特征提取
ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
convnextv2_base.fcmae_ft_in22k_in1k_384 - 高效图像识别与特征开发的开源解决方案
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2是一款基于全卷积掩码自编码器(FCMAE)预训练的图像分类模型,能够高效处理ImageNet-22k和ImageNet-1k数据集。模型拥有88.7M的参数和45.21 GMACs,适合精准的图像识别和特征开发。兼容timm库,支持图像分类、特征图提取和图像嵌入生成等应用场景。通过简单的Python代码即可调用该模型,提升开发效率。
fashion-clip - 专为时尚领域优化的对比语言视觉学习模型
CLIPFashionCLIPGithubHugging Face开源项目时尚行业模型
FashionCLIP是一个为时尚行业优化的CLIP模型,用于提升商品检索、分类和时尚分析的表现。通过超过70万对图像和文本数据进行微调,FashionCLIP在零样本场景下表现出色。更新版FashionCLIP 2.0采用更多训练数据,显著提高了FMNIST、KAGL和DEEP数据集的性能。项目提供开源代码和模型权重,可在Hugging Face上获取,并支持多种API和教程便于上手。
blip-image-captioning-large - BLIP框架驱动的先进图像描述模型
BLIPGithubHuggingface图像描述多模态学习开源项目模型自然语言处理视觉语言预训练
blip-image-captioning-large是基于BLIP框架的图像描述模型,采用ViT大型骨干网络和COCO数据集预训练。它支持条件和无条件图像描述,在图像-文本检索、图像描述和视觉问答等任务中表现卓越。该模型具有出色的泛化能力,支持CPU和GPU(含半精度)推理,为图像理解和生成研究提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号