Project Icon

deep-high-resolution-net.pytorch

基于PyTorch的官方实现,专门用于人体姿态估计的深度学习模型

deep-high-resolution-net.pytorch 项目提供了一个基于PyTorch的官方实现,专门用于人体姿态估计的深度学习模型。项目支持多个标准数据集,验证了其可靠性与准确性,也适应于多种视觉任务如图像分类及目标检测等。

torchlm - 面向人脸关键点检测的开源工具包
Githubtorchlm人脸关键点检测开源项目数据增强模型训练深度学习
torchlm是一个开源的人脸关键点检测工具包,提供训练、评估、导出和推理功能。它包含100多种数据增强方法,支持30多种原生关键点增强,可与torchvision和albumentations集成。torchlm实现了PIPNet等先进模型,在多个基准数据集上性能出色。该项目简化了人脸关键点检测的开发流程,适用于研究和实际应用。
MonocularTotalCapture - 单目3D人体姿态全方位捕捉系统
3D建模Adam模型Github人体姿态估计开源项目深度学习计算机视觉
MonocularTotalCapture是一个开源项目,旨在实现野外环境下的单目3D人体姿态全方位捕捉。该系统同时捕捉人脸、身体和手部姿态,采用Adam可变形人体模型和OpenPose技术。基于CVPR19研究成果,项目提供完整的安装使用指南,为计算机视觉研究和3D重建提供了有力工具,仅限非商业研究使用。
pix2pixHD - 高分辨率图像到图像转换及语义编辑
GANsGithubpix2pixHD图像翻译开源项目语义操控高分辨率
此Pytorch实现的高分辨率图像到图像转换方法(如2048x1024),可以将语义标签图转化为真实感图像,或从面部标签图生成肖像。该项目适用于街景和肖像等图像生成及交互编辑。需要NVIDIA GPU,提供详细的安装、测试和训练指南,支持多GPU和自动混合精度训练。
HumanBench - 推动人体感知基础模型研究进展
CVPRGithubHumanBench人体感知基础模型开源项目计算机视觉
HumanBench项目致力于开发通用人体感知基础模型,包含PATH和UniHCP两个子项目,均发表于CVPR 2023。该项目采用投影辅助预训练技术,旨在提升模型性能,为计算机视觉领域提供新的研究方向。项目代码已开源,上海人工智能实验室正在招募相关研究人员和工程师,共同推进人体感知基础模型的研究。
detr-resnet-50-panoptic - DETR模型:结合ResNet-50的端到端目标检测与全景分割
DETRGithubHuggingfaceTransformer开源项目模型目标检测计算机视觉语义分割
DETR-ResNet-50是一种创新的目标检测模型,融合了Transformer和卷积神经网络技术。该模型在COCO数据集上训练,支持端到端的目标检测和全景分割。通过100个对象查询机制,DETR实现了高效准确的目标识别。在COCO 2017验证集上,模型展现出优秀性能:框AP为38.8,分割AP为31.1,全景质量(PQ)达43.4。这一模型为计算机视觉任务提供了新的解决方案。
torch-points3d - 用于在点云上进行深度学习的 Pytorch 框架
CUDAGithubPyTorchtorch-points3d开源项目深度学习点云分析
一个用于点云分析的深度学习框架,基于Pytorch Geometric和Facebook Hydra。该框架支持构建复杂模型并提供高层次API,支持PointNet、PointNet++、RSConv等常见模型,便捷实现分类、分割和检测任务。推荐使用Docker安装以确保兼容性。了解更多信息,请查阅文档和示例笔记本。
HashNeRF-pytorch - 纯PyTorch实现的高速NeRF训练框架
AI绘图GithubNeRFPyTorch多分辨率哈希编码开源项目神经网络
HashNeRF-pytorch是一个基于PyTorch的Instant-NGP实现,专注于加速NeRF(神经辐射场)训练。该项目采用多分辨率哈希编码,将训练速度提升至传统NeRF方法的100倍。它支持多种数据集,提供简洁的使用指南和额外优化功能。这个开源项目为AI研究人员提供了一个探索和创新NeRF技术的平台,尤其适合需要在PyTorch环境中快速实现高质量3D渲染的开发者。
detr-resnet-50 - DETR 基于Transformer的创新目标检测模型
COCO数据集DETRGithubHuggingfaceResNet-50Transformer开源项目模型目标检测
DETR-ResNet-50是一种创新的目标检测模型,融合Transformer架构与ResNet-50骨干网络。该模型采用端到端训练方法,简化了传统目标检测流程。经COCO 2017数据集训练后,DETR能高效检测和定位图像中的多个物体,在目标检测任务中实现42.0的平均精度(AP)。其简洁设计和卓越性能为计算机视觉领域带来新的可能。
gdrnpp_bop2022 - GDRNPP:BOP挑战赛获奖的6D物体姿态估计算法
6D姿态估计BOP Challenge 2022GDRNPPGithub姿态优化开源项目目标检测
GDRNPP_BOP2022是一个在ECCV'22 BOP挑战赛中获得多项大奖的6D物体姿态估计算法。该项目采用域随机化技术、ConvNext骨干网络和双重掩码头,并结合深度信息进行姿态优化。项目提供完整的训练和测试代码,涵盖目标检测、姿态估计和优化,为计算机视觉研究提供高性能的6D姿态估计工具。
DeepLabCut - 无标记动物姿态估计工具箱
DeepLabCutGithub动物姿态估计开源工具箱开源项目神经科学应用行为追踪
DeepLabCut是一个无标记动物姿态估计工具箱。此工具适用于各类动物行为的分析,并通过TensorFlow和PyTorch加强模型训练功能。它整合了多种新技术,如MobileNetV2s与EfficientNets,有效提升了效率与准确性。项目提供多语种文档与在线课程,方便用户快速掌握实时多动物追踪及三维姿态估计技术。DeepLabCut已应用于多种场合并获得验证,通过社区持续的优化适用于从神经科学到生态研究的广泛领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号