Project Icon

deep-high-resolution-net.pytorch

基于PyTorch的官方实现,专门用于人体姿态估计的深度学习模型

deep-high-resolution-net.pytorch 项目提供了一个基于PyTorch的官方实现,专门用于人体姿态估计的深度学习模型。项目支持多个标准数据集,验证了其可靠性与准确性,也适应于多种视觉任务如图像分类及目标检测等。

3DMPPE_ROOTNET_RELEASE - 单张RGB图像的相机距离感知的3D多人人体姿态估计实现
3D姿态估计GithubPyTorchRGB图像RootNet多人体姿态估计开源项目
此项目基于PyTorch实现了3D多人人体姿态估计,兼容多种公开的2D和3D数据集,如Human3.6M、MPII、MS COCO、MuCo-3DHP、MuPoTS-3D和3DPW。其特点包括代码简洁灵活、直观的人体姿态可视化,并支持不同单位系统的适配。项目还提供详细的训练和测试指南,旨在帮助用户在GPU环境下高效运行姿态估计算法。
lightweight-human-pose-estimation.pytorch - 实时2D多人人体姿态估计的PyTorch实现
2D多人体姿态估计COCO数据集CPUGithubOpenPose实时推断开源项目
该项目实现了实时2D多人人体姿态估计的训练代码,基于OpenPose优化技术,使其能够在CPU上进行实时推理且准确度几乎不变。此模型能够识别并连接18个关键点,在COCO 2017数据集的验证集上达到40%的AP。项目对多种深度学习框架和设备友好支持。
V2V-PoseNet_RELEASE - 从单个深度图进行高精度3D手部和人体姿态预测
3D手势估计GithubPyTorchV2V-PoseNet团队SNU CVLAB开源项目深度图
V2V-PoseNet是一种基于单个深度图的高精度3D手部和人体姿态估计方法。该项目由首尔国立大学计算机视觉实验室开发,并在HANDS2017挑战赛中表现出色。其内容包括模型架构、训练代码、数据集说明及预训练模型下载。支持ICVL、NYU、MSRA和ITOP等多个著名数据集,并提供详细的比较和测试结果。仓库还包含可视化代码,方便研究人员进一步应用和测试。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
MocapNET - 基于RGB图像的3D人体姿态实时估计
3D姿态估计GithubMocapNETRGB图像Tensorflow实时性能开源项目
MocapNET项目通过2D关节估计,将单目RGB图像转换为3D人体姿态,实现实时估计。它采用NSRM表示法、新的人体方位分类器和复合神经网络,能够在显著遮挡情况下精确恢复人体姿态。通过逆运动学解算器,MocapNET显著提升了人体姿态估计的准确性。最新的MocapNET v4版本用Python重写,支持3D凝视和BVH面部配置检索,并提供一键Google Collab部署和Blender 3D编辑器插件。项目不断更新,旨在提高其对社区的实用性和可访问性。
multi-hmr - 单次处理实现多人全身3D人体网格重建
GithubMulti-HMR人体网格重建多人检测开源项目深度学习计算机视觉
Multi-HMR是一种高效的单次处理模型,用于多人全身人体网格重建。该模型仅需一张RGB图像输入,即可在相机空间中重建多个人的3D模型。项目在BEDLAM、EHF等多个数据集上实现了领先性能,并提供预训练模型和演示代码,可应用于图像中的多人3D重建任务。
TokenHMR - 基于令牌化姿态表示的人体网格重建新方法
GithubTokenHMR人体网格恢复姿态表示开源项目深度学习计算机视觉
TokenHMR采用阈值自适应损失缩放和令牌预测技术,通过令牌化和TokenHMR两个阶段提高3D人体网格重建精度。该方法在图像对齐和3D姿态估计方面均有良好表现,可用于图像和视频处理,对人体姿态和形状估计研究具有重要意义。
3D-ResNets-PyTorch - 用于动作识别的 3D ResNets
3D ResNetsAction RecognitionGithubPyTorchSpatiotemporal 3D CNNs开源项目预训练模型
该项目提供基于PyTorch的3D ResNet代码,适用于动作识别,支持Kinetics和Moments in Time等数据集。项目包含训练、微调和测试脚本,并提供预训练模型,支持最新的PyTorch版本和分布式训练。用户可使用详细脚本进行数据准备和模型评估,适合研究与应用。
HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
6DRepNet - 全范围无约束头部姿态估计方法
6DRepNetGithub头部姿态估计开源项目旋转矩阵深度学习计算机视觉
6DRepNet是一种创新的头部姿态估计方法,采用6D旋转矩阵表示和测地线距离损失函数。该方法能学习完整的旋转外观,实现无约束全范围头部姿态预测。在AFLW2000和BIWI数据集上,6DRepNet显著优于现有方法,平均角度误差降低20%。项目提供pip安装包,支持实时摄像头演示。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号