Project Icon

clip-japanese-base

日语CLIP模型,支持图像和文本的零样本分类与检索

该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。

japanese-clip-vit-b-16 - 日语CLIP模型实现跨模态文本图像语义匹配
CLIPGithubHuggingfaceViT-B/16japanese-clip图像识别开源项目模型深度学习
rinna公司开发的日语CLIP模型采用ViT-B/16 Transformer架构,通过CC12M数据集的日语翻译版本训练而成。该模型实现了日语文本与图像的跨模态理解和语义匹配,提供简洁的API接口,适用于图像检索和跨模态搜索等场景。作为Apache 2.0许可的开源项目,它为日语视觉语言处理领域提供了实用的基础工具。
CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k - 具备零样本学习与多语言支持的图像模型
CLIP ViT-B/32GithubHuggingfaceLAION-5B图像分类多语言性能开源项目模型零样本学习
该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。
clip-vit-base-patch32 - OpenAI CLIP模型实现零样本图像分类的视觉语言预训练
CLIPGithubHuggingfaceOpenAI图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言预训练模型,使用ViT-B/32和Transformer架构分别作为图像和文本编码器。通过对比学习训练,CLIP能实现零样本图像分类等任务,在多项计算机视觉基准测试中表现优异。尽管在细粒度分类和物体计数方面存在局限,CLIP为研究人员提供了探索模型鲁棒性和泛化能力的重要工具。
CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k - CLIP架构多语言视觉语言模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-5B图像分类多语言模型开源项目模型零样本学习
这是一个基于CLIP架构的多语言视觉语言模型,在LAION-5B数据集上训练。模型结合了冻结的ViT-H/14视觉结构和XLM-RoBERTa大型文本模型,在多语言零样本图像分类和检索任务中表现优异。适用于零样本图像分类、图文检索等应用,也支持下游任务微调。该模型在英语及其他语言中均展现出强大性能,为跨语言视觉AI应用提供了有力支持。
clip-vit-base-patch16 - OpenAI开发的CLIP模型实现零样本图像分类和跨模态理解
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言模型,结合ViT-B/16和masked self-attention Transformer架构。通过对比学习,实现零样本图像分类和跨模态理解。在多项计算机视觉基准测试中表现优异,但在细粒度分类和对象计数方面存在局限。该模型主要用于研究计算机视觉任务的鲁棒性和泛化能力,不适用于商业部署。
clip-ViT-B-32-multilingual-v1 - CLIP-ViT-B-32多语言模型实现文本图像向量映射和跨语言搜索
CLIPGithubHuggingfacesentence-transformers图像搜索多语言模型开源项目模型零样本分类
CLIP-ViT-B-32-multilingual-v1是OpenAI CLIP-ViT-B32模型的多语言拓展版本。该模型能将50多种语言的文本和图像映射到同一向量空间,支持多语言图像搜索和零样本图像分类。通过sentence-transformers库,用户可以方便地使用该模型。模型采用多语言知识蒸馏技术,将CLIP原始向量空间对齐到多语言空间。这为跨语言图像搜索和理解提供了有力支持,是图像-文本多语言处理的有效工具。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
CLIP-ViT-L-14-laion2B-s32B-b82K - CLIP-ViT-L-14模型实现高效零样本图像分类和检索
CLIPGithubHuggingfaceLAION-2B图像分类开源项目模型视觉语言模型零样本学习
CLIP-ViT-L-14-laion2B-s32B-b82K模型基于LAION-2B英语数据集训练,在ImageNet-1k上实现75.3%的零样本top-1准确率。它支持零样本图像分类和图文检索等任务,是研究零样本图像分类的重要工具。该模型在JUWELS Booster超级计算机上完成训练,为计算机视觉研究提供了新的可能性。
CLIP-convnext_base_w-laion_aesthetic-s13B-b82K - LAION-5B训练的ConvNeXt-Base CLIP模型
CLIPConvNextGithubHuggingface图像分类开源项目数据集机器学习模型
ConvNeXt-Base架构的CLIP模型在LAION-5B子集上完成训练,支持256x256和320x320两种图像分辨率。在ImageNet零样本分类评测中取得70.8%-71.7%的top-1准确率,样本效率超过同规模ViT-B/16模型。该模型主要用于研究领域,可执行零样本图像分类和图文检索等任务。
CLIP-convnext_base_w-laion2B-s13B-b82K - ConvNeXt CLIP模型在ImageNet零样本分类中达到70.8%以上准确率
CLIPConvNeXtGithubHuggingfaceLAION-5BOpenCLIP开源项目模型零样本图像分类
这是一系列基于LAION-5B数据集训练的CLIP ConvNeXt-Base模型。经过13B样本训练后,模型在ImageNet零样本分类中实现了70.8%以上的Top-1准确率,显示出比ViT-B/16更高的样本效率。模型使用timm的ConvNeXt-Base作为图像塔,并探索了增强图像增强和正则化的效果。作为首个在CLIP ViT-B/16和RN50x4规模下训练的ConvNeXt CLIP模型,它为零样本图像分类研究提供了新的选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号