Project Icon

clip-japanese-base

日语CLIP模型,支持图像和文本的零样本分类与检索

该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。

mDeBERTa-v3-base-finetuned-nli-jnli - 基于多语言NLI和JGLUE数据集微调的日语NLP模型
GithubHuggingfacemDeBERTa-v3多语言模型开源项目微调模型自然语言推理零样本分类
该模型基于微软mdeberta-v3-base在多语言NLI和JGLUE数据集上微调而来。它支持日语零样本文本分类和跨语言自然语言推理任务,在评估集上达到68.08%准确率和67.42% F1分数。模型可应用于日语主题分类、跨语言蕴含关系判断等自然语言处理任务,为日语NLP应用提供了有力支持。
bert-base-japanese-char-v2 - 基于日语维基百科的字符级BERT预训练模型
BERTGithubHuggingface开源项目日语模型机器学习模型维基百科数据集自然语言处理
本模型是基于日语维基百科训练的BERT预训练模型,采用字符级分词和全词掩码方法。它保持了原始BERT的12层结构和768维隐藏状态,使用MeCab和Unidic词典处理输入文本,词汇量为6144。训练在Cloud TPU上完成,遵循原始BERT的配置。该模型可广泛应用于日语自然语言处理领域,为研究和开发提供有力支持。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
JaColBERTv2.5 - 优化资源应用的日语信息检索模型
GithubHuggingfaceJaColBERTv2.5多语言模型开源项目数据集日本语检索器模型模型权重
该模型使用全新的训练方法,基于40%的数据成功创建了高效的日语信息检索系统。在多个数据集上表现优异,特别是改进的多向量检索方法,在资源受限的情况下提供卓越性能,优于包括BGE-M3在内的多语言模型,适合资源有限的应用场景。
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 - 基于PubMedBERT的生物医学视觉语言基础模型
BiomedCLIPGithubHuggingfacePubMedBERT图像分类开源项目模型生物医学视觉语言处理
BiomedCLIP是一个生物医学视觉语言基础模型,集成了PubMedBERT和Vision Transformer技术。该模型通过1500万医学图像-文本对的预训练,能够执行跨模态检索和图像分类等任务。在多个标准数据集上,BiomedCLIP显著提升了性能基准。这一模型为生物医学视觉语言处理研究奠定了坚实基础,在放射学等领域具有广泛应用前景。
metaclip-b16-fullcc2.5b - CLIP训练数据解构与MetaCLIP模型应用
CommonCrawlGithubHugging FaceHuggingfaceMetaCLIP图像分类开源项目数据管理模型
MetaCLIP模型利用25亿个CommonCrawl数据点,在共享嵌入空间中实现图像与文本的链接应用。实现零样本图像分类、文本驱动的图像检索及图像驱动的文本检索。《Demystifying CLIP Data》论文揭示了CLIP数据训练方法,促进多模态应用发展。
clip-ViT-B-32-vision - 图像分类与相似性搜索的简便工具
FastEmbedGithubHuggingfaceONNXimage-classification开源项目模型模型推理视觉相似搜索
clip-ViT-B-32模型的ONNX版本,支持图像分类和相似性搜索。利用FastEmbed库,用户能够快速处理图像嵌入,该模型在视觉任务中表现出色,适用于多种应用场景。
StreetCLIP - 开域图像地理定位的高性能零样本学习模型
GithubHuggingfaceOpenAIStreetCLIP图像地理定位城市场景开源项目模型零样本学习
StreetCLIP是一个在开域图像地理定位中实现零样本学习的预训练模型,基于OpenAI的CLIP ViT,通过1.1百万街景图像进行训练,与传统监督模型相比具有更优性能,适用于城市和乡村环境。该模型能够将图像特征与特定地理位置关联,可应用于建筑分析、自然环境监测、基础设施检查等多种领域,并有助于导航和自动驾驶技术的改进。
CLIP-ViT-L-14-DataComp.XL-s13B-b90K - 基于DataComp-1B数据集训练的零样本图像分类器
CLIPDataComp-1BGithubHuggingfaceOpenCLIP多模态模型开源项目模型零样本图像分类
CLIP ViT-L/14是一个基于DataComp-1B大规模数据集训练的多模态模型。在ImageNet-1k上达到79.2%的零样本分类准确率,可用于图像分类、检索等任务。该模型主要面向研究社区,旨在促进对零样本和任意图像分类的探索。由stability.ai提供计算资源支持,不建议直接用于部署或商业用途。
CLIP-ViT-B-16-DataComp.XL-s13B-b90K - 多模态模型CLIP ViT-B/16的零样本图像分类解析
CLIPGithubHuggingface图像生成开源项目数据集模型训练数据零样本图像分类
CLIP ViT-B/16模采用DataComp-1B数据集训练,并结合OpenCLIP工具,旨在促进研究者对零样本图像分类的理解。该模型在ImageNet-1k数据集上实现了73.5%的零样本准确率,展示了其在多领域研究中的潜力和挑战。由于数据集仍未完全筛选,建议仅限于学术研究使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号