Project Icon

NSFW_text_classifier

DistilRoBERTa文本智能分类模型自动识别不当内容

DistilRoBERTa-base文本分类模型通过14317条Reddit帖子训练,可识别文本内容是否适合工作场合。模型采用NSFW(不适合工作场合)和SFW(适合工作场合)二分类方法,支持Pipeline快速部署,可用于社交媒体和在线社区的内容审核。

fineweb-edu-fasttext-classifier - 高效快速的FastText分类器用于网页教育价值评估
FastTextGithubHuggingFaceFWHuggingface分类器开源项目教育价值模型模型评估
该项目引入了一种基于FastText的分类器,旨在评估网页的教育价值。通过使用fineweb-edu-llama3-annotations数据集进行训练,该模型支持高速数据处理,在CPU上每秒可分类超过2000个样本。该分类器与基于transformer的模型进行了性能比较,尤其在标签0、1、2上的表现相近,但在较高标签上性能稍有下降。适合用于需要快速判断网页教育内容的场景,是处理大数据的有效工具。
toxic-comment-model - 使用DistilBERT进行在线毒性评论分类的模型与偏见分析
DistilBERTGithubHuggingface偏差培训数据开源项目模型毒性评论
该模型基于DistilBERT进行精调,专为在线毒性评论分类设计。尽管总体表现出色,但在识别某些身份群体时表现出偏见,如穆斯林和犹太人。通过示例代码能快速应用此模型,其在10000条测试数据中取得94%的准确率,但f1-score为0.59。更多信息及训练代码可在指定GitHub仓库获取。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF - 结合多模型的量化文本生成引擎
GithubHuggingfaceNSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1transformers开源项目文本生成模型模型合并量化
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF是利用llama.cpp开发的量化模型,整合了mistralai和athirdpath的两款7B模型。通过slerp合并法和bfloat16数据类型,该项目优化了文本生成任务的性能。用户可以通过Transformers和Accelerate库在Python中完成文本生成。该模型结合了多模型的优点,专为处理复杂文本生成任务而设计,提供了高效的运行性能。
distilbert-base-uncased-mnli - DistilBERT零样本文本分类模型在MNLI数据集上的应用
DistilBERTGithubHuggingface开源项目文本分类机器学习模型自然语言推理零样本分类
DistilBERT零样本文本分类模型在MNLI数据集上微调,适用于多种英语文本分类任务。模型在MNLI和MNLI-mm评估中均达82.0%准确率,展现出优秀性能。虽然使用简便,但需注意潜在偏见问题。模型由Typeform团队开发,在AWS EC2 P3实例上训练。该模型为自然语言处理领域提供了有力工具,同时也引发了对AI公平性的思考。
toxic-bert - 基于深度学习的多语言有毒评论检测工具
DetoxifyGithubHuggingface内容审核开源项目机器学习模型毒性评论分类自然语言处理
Detoxify是一个开源的深度学习工具,专门用于识别和分类有毒评论。该项目基于PyTorch Lightning和Transformers框架,提供三个预训练模型,分别针对一般有毒评论、含偏见的有毒评论和多语言有毒评论。Detoxify能够检测威胁、淫秽、侮辱等多种有毒内容,支持英语、法语等7种语言。这个工具易于使用,适合研究人员或内容审核人员使用,但在应用时需要注意潜在的偏见问题。
distilroberta-base-climate-detector - 基于DistilRoBERTa的气候相关文本检测模型
ClimateBERTGithubHuggingface开源项目文本分类机器学习模型模型微调气候检测
distilroberta-base-climate-detector是一个专注于气候相关文本检测的自然语言处理模型。它基于DistilRoBERTa架构,在气候检测数据集上进行了微调,能够高效识别气候相关段落。该模型易于集成到Transformers库的文本分类管道中,为气候变化研究和环境分析提供了实用的工具。
flux-nsfw-highress - Stable Diffusion LoRA模型用于高分辨率NSFW图像生成
AI绘画GithubHuggingfacestable-diffusion人像摄影写实风格开源项目模型模特写真
这是一个基于Stable Diffusion的LoRA模型,专门用于生成高分辨率NSFW图像。该模型能够创建细节丰富、光影自然的逼真图像,特别擅长捕捉人物特征和纹理。它适用于需要高质量NSFW内容的创作场景,但使用时需注意遵守相关法律法规。
twitter-roberta-base-dec2021-tweet-topic-multi-all - 基于RoBERTa的多标签推文主题分类模型
GithubHuggingfaceTwitter RoBERTa多标签分类开源项目文本分类机器学习模型模型自然语言处理
这是一个基于twitter-roberta-base-dec2021的微调模型,专注于多标签推文主题分类。模型在tweet_topic_multi数据集上训练,在test_2021测试集上实现76.48%的微平均F1分数。它能有效识别社交媒体文本中的多个主题,为内容分析提供了可靠的自然语言处理工具。
tiny-bert-sst2-distilled - 轻量级BERT文本情感分类模型
BERTGithubHuggingface开源项目数据集微调文本分类机器学习模型模型训练
tiny-bert-sst2-distilled模型通过对BERT基础版本进行蒸馏优化,专注于文本情感分类任务。该模型在SST-2评估集上达到83.26%的准确率,保持了不错的性能表现。模型架构采用2层transformer结构,隐藏层维度为128,具有轻量化特点,适合在计算资源有限的环境中部署使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号