Project Icon

conditional-detr-resnet-50

基于条件机制增强ResNet-50的图像检测模型

Conditional DETR结合了ResNet-50,通过条件交叉注意力机制加速COCO 2017数据集上的训练收敛。在目标检测任务中,该模型解决了训练收敛缓慢的问题,提升了特征提取和目标分类的效率。通过条件空间查询机制,模型能够更高效地定位目标区域,提高了训练速度。在R50和R101骨干网下加速6.7倍,DC5-R50和DC5-R101下加速10倍,并支持PyTorch。

nnDetection - 自适应医学目标检测框架
GithubnnDetection医学目标检测开源项目深度学习自动配置计算机辅助诊断
nnDetection是一个自适应医学目标检测框架,能够自动配置以适应不同医学检测任务。该框架在ADAM和LUNA16等公共基准测试中展现出与顶尖方法相当或更优的性能。项目支持Docker容器和本地安装,提供多个医学数据集的处理指南,便于复现实验结果和集成新数据集。nnDetection为医学目标检测研究提供了标准化接口和自动化工作流程。
yolov9 - 高效准确的目标检测算法
GithubYOLOv9开源项目深度学习目标检测神经网络计算机视觉
YOLOv9是一种新型目标检测算法,采用可编程梯度信息技术提高学习能力。该开源项目提供YOLOv9的官方实现,包含预训练模型、训练评估脚本和使用文档。在COCO数据集上,YOLOv9展现出优异的检测性能,同时保持较低的模型复杂度。研究人员和开发者可利用这一工具进行高效准确的目标检测任务。
OpenPCDet - 开源LiDAR 3D目标检测框架 支持多种先进算法和数据集
3D目标检测GithubLiDAROpenPCDet开源项目深度学习点云
OpenPCDet是一个开源LiDAR 3D目标检测框架,支持PointRCNN、PV-RCNN等多种算法。具有简洁设计,兼容多种数据集和模型,在KITTI和Waymo等数据集上提供基准性能。支持分布式训练和多头检测,是功能丰富的3D检测工具箱。
yolov5 - 视觉AI对象检测和图像分类技术
YOLOv5,一款由Ultralytics开源的视觉AI模型,支持对象检测、图像分割与分类。提供全面文档及社区支持,适合各级用户使用,并定期更新以集成最新技术。
MaskDINO - 统一的Transformer架构革新目标检测与分割任务
GithubMask DINOtransformer图像分割开源项目深度学习目标检测
MaskDINO项目提出统一的Transformer架构,整合目标检测、全景分割、实例分割和语义分割任务。该架构实现检测与分割的协同,并在COCO、ADE20K和Cityscapes等主要数据集上取得领先成果。在相同条件下,MaskDINO的性能超越了现有方法,展现出在视觉任务中的卓越潜力。
ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
GroundingDINO - 语言驱动的开放集目标检测模型
GithubGrounding DINO开放集检测开源项目目标检测计算机视觉语言指导
GroundingDINO是一个基于语言的开放集目标检测模型,能够检测图像中的任意物体。该模型在COCO数据集上实现了零样本52.5 AP和微调后63.0 AP的性能。GroundingDINO支持CPU模式,可与Stable Diffusion等模型集成用于图像编辑,还能与SAM结合实现分割功能。此外,项目提供了丰富的演示和教程资源,为开放世界目标检测领域带来了新的解决方案。
pytorch-hed - PyTorch重实现的全息嵌套边缘检测HED算法
GithubHEDPyTorch开源项目深度学习计算机视觉边缘检测
该项目是Holistically-Nested Edge Detection (HED)算法的PyTorch重新实现。项目提供命令行工具进行图像边缘检测,使用官方权重但在BSDS500数据集上ODS评分为0.774,略低于原始Caffe版本的0.780。项目包含使用说明、性能对比和引用信息,为研究和开发人员提供HED算法的实现参考。
grounding-dino-tiny - Grounding DINO模型实现开放集目标检测的创新突破
GithubGrounding DINOHuggingface开源项目模型深度学习目标检测计算机视觉零样本学习
Grounding DINO模型通过结合DINO与接地预训练技术,实现了开放集目标检测。该模型添加文本编码器,扩展了传统闭集检测模型的能力,可进行零样本目标检测。在COCO数据集上,Grounding DINO取得了52.5 AP的优秀成绩,为计算机视觉中未标记物体的识别提供了新的解决方案。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
GithubHuggingfaceRegNetY图像分类开源项目数据集模型特征提取预训练
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号