Project Icon

resnet-152

深入解析ResNet-152在图像分类中的应用

ResNet-152 v1.5模型在ImageNet-1k上预训练,采用224x224分辨率,改进后的下采样策略提升了模型的准确性。该模型可用于图像分类,亦可在模型中心找到特定任务的微调版本。

vit-tiny-patch16-224 - 轻量级ViT模型实现高效图像分类
GithubHugging FaceHuggingfaceImageNetVision Transformer图像分类开源项目权重转换模型
vit-tiny-patch16-224是一个轻量级视觉transformer模型,专注于图像分类任务。这个模型采用16x16的patch大小和224x224的输入分辨率,在保持分类准确性的同时大幅降低了计算资源需求。其小型结构使其特别适合在资源受限环境中使用或需要快速推理的场景。值得注意的是,该模型是基于Google的ViT架构,由第三方研究者使用timm仓库的权重进行转换和发布。
deit3_base_patch16_224.fb_in1k - ImageNet-1k图像分类与嵌入的DeiT-III解决方案
DeiT-IIIGithubHuggingfaceImage EmbeddingsImageNet-1k图像分类开源项目模型模型比较
DeiT-III是一款经过ImageNet-1k训练的图像分类和嵌入模型,拥有86.6M参数以及17.6 GMACs。该模型可以进行图像特征提取与多任务处理,适用于各种视觉应用。对于图形识别及计算机视觉项目的从业者而言,其为ViT提供了一个新的升级途径。
FasterViT - 高效分层注意力的视觉transformer新突破
FasterViTGithub图像分类层级注意力机制开源项目目标检测视觉Transformer
FasterViT是一种创新的视觉transformer模型,采用分层注意力机制高效捕获短程和长程信息。在ImageNet分类任务中,FasterViT实现了精度和吞吐量的新平衡,无需额外训练数据即达到最先进水平。该项目提供多种预训练模型,适应不同计算资源和精度需求,支持任意分辨率输入,为目标检测、分割等下游任务提供灵活选择。
blip-image-captioning-large - BLIP框架驱动的先进图像描述模型
BLIPGithubHuggingface图像描述多模态学习开源项目模型自然语言处理视觉语言预训练
blip-image-captioning-large是基于BLIP框架的图像描述模型,采用ViT大型骨干网络和COCO数据集预训练。它支持条件和无条件图像描述,在图像-文本检索、图像描述和视觉问答等任务中表现卓越。该模型具有出色的泛化能力,支持CPU和GPU(含半精度)推理,为图像理解和生成研究提供了有力工具。
vit-base-patch16-224-in21k - 基于ImageNet-21k预训练的视觉Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
这是一个基于Transformer架构的视觉模型,在包含1400万图像和21843个类别的ImageNet-21k数据集上预训练。模型将图像转换为16x16像素的固定大小patch序列,通过自注意力机制处理。它可用于图像分类等多种视觉任务,提供强大的特征提取能力。模型支持PyTorch和JAX/Flax框架,适用于需要高性能视觉理解的应用场景。
PyTorch-Encoding - 基于PyTorch的高效深度学习编码网络
GithubPyTorch-EncodingResNeSt图像分类开源项目深度学习语义分割
PyTorch-Encoding由Hang Zhang创建,提供了详细的安装和使用说明,包含图像分类和语义分割模型。项目集成了ResNeSt和Deep TEN等编码网络,在ADE20K和PASCAL Context等数据集上取得了出色表现。其高效的上下文编码方法为深度学习提供了新的解决方案,是计算机视觉领域的重要工具。
C-Tran - Transformer在多标签图像分类中的应用
GithubTransformers图像分类多标签分类开源项目深度学习计算机视觉
C-Tran是一个探索Transformer在多标签图像分类中应用的开源项目。该项目提出了一种通用多标签图像分类方法,在COCO80和VOC20等数据集上展现出优秀性能。项目包含完整的训练和运行指南,涵盖数据处理和模型训练等关键步骤。C-Tran为计算机视觉领域提供了新的研究方向,对推进多标签图像分类技术具有重要意义。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
beit-base-patch16-224-pt22k-ft22k - BEiT 基于Transformer的自监督图像分类模型
BEiTGithubHuggingfaceImageNet图像分类开源项目模型自监督学习视觉转换器
BEiT是一种基于Transformer的图像分类模型,在ImageNet-22k数据集上进行自监督预训练和微调。它采用掩码预测目标和相对位置编码,有效学习图像表示。该模型在多个图像分类基准测试中表现出色,为计算机视觉任务提供了强大的基础。
LeNet5-MNIST-PyTorch - PyTorch实现LeNet-5识别MNIST数据集
GithubLeNet-5MNISTPyTorch图像识别开源项目深度学习
这是一个开源深度学习项目,使用PyTorch实现LeNet-5卷积神经网络识别MNIST数据集。项目采用MaxPooling和ReLU,测试集精度达99%。包含完整代码实现,涵盖数据处理、模型训练和评估。适合深度学习初学者学习卷积神经网络基础知识。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号