Project Icon

Mixtral-8x7B-v0.1

多语言预训练大语言模型 超越Llama 2 70B性能

Mixtral-8x7B是一款预训练的生成式稀疏专家混合大语言模型,在多数基准测试中性能优于Llama 2 70B。该模型支持法语、意大利语、德语、西班牙语和英语等多语言处理。开发者可通过Hugging Face transformers库或vLLM部署使用,并可采用半精度、8位和4位量化等方法降低内存占用。作为基础模型,Mixtral-8x7B不含内置审核机制,使用时需注意。

Mixtral-8x7B-Instruct-v0.1 - 多语言稀疏混合专家大规模语言模型
GithubHuggingfaceMixtral-8x7B人工智能大语言模型开源项目模型稀疏专家混合自然语言处理
Mixtral-8x7B是一个预训练生成式稀疏混合专家大语言模型,在多数基准测试中超越Llama 2 70B。支持法语、意大利语、德语、西班牙语和英语等多语言,采用Apache-2.0许可。模型基于Mixtral-8x7B-v0.1,可通过transformers或vLLM进行推理,并支持半精度、8位和4位量化以优化内存使用。
Mixtral-8x22B-v0.1 - 多平台兼容的预训练大规模语言模型
GithubHugging FaceHuggingfaceMistral AIMixtral-8x22B开源项目模型生成模型语言模型
这是一款多语言兼容的预训练大型语言模型,支持生成性稀疏专家技术,兼容vLLM和Hugging Face transformers库,提供灵活的运行选项和优化内存管理的优势。然而,用户需注意,该模型没有内容审核功能。
mixtral-7b-8expert - 高性能开源混合专家语言模型,支持多语言并具有出色的基准分数
GithubHuggingfaceMixtral人工智能模型开源项目机器学习模型混合专家模型自然语言处理
Mixtral-7b-8expert是MistralAI开发的混合专家(MoE)模型在Hugging Face平台的实现。这个开源项目在MMLU、hella swag等多项基准测试中表现出色,支持英、法、意、西、德五种语言。模型提供简便的推理设置,基于Apache-2.0许可发布,适合自然语言处理研究和应用开发。
Mixtral-8x7B-Instruct-v0.1-GGUF - Mixtral-8x7B多语言模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral AIMixtral 8X7B开源项目模型量化
本项目提供Mixtral-8x7B-Instruct-v0.1模型的GGUF量化版本。GGUF格式支持CPU和GPU高效推理,项目包含2至8比特多种量化等级文件。模型支持英、法、意、德、西等语言,适用多种NLP任务。用户可通过llama.cpp等工具便捷运行这些模型。
Mixtral-8x22B-Instruct-v0.1 - 多语言指令微调大型语言模型
GithubHuggingfaceMixtral-8x22B-Instruct-v0.1函数调用大语言模型开源项目推理标记器模型
Mixtral-8x22B-Instruct-v0.1是基于Mixtral-8x22B-v0.1的指令微调版大型语言模型。该模型支持多语言处理,具备出色的自然语言理解和生成能力。它适用于对话、问答和函数调用等多种任务。模型采用先进的分词器和推理技术,开发者可通过mistral_common和transformers库方便使用。Mixtral-8x22B-Instruct-v0.1为AI应用开发提供了可靠的基础。
Mixtral-8x7B-Instruct-v0.1-GPTQ - Mixtral-8x7B多语言推理模型的GPTQ量化版本
GPTQGithubHuggingfaceMixtral 8X7B大语言模型开源项目推理模型量化
本项目提供Mistral AI的Mixtral-8x7B-Instruct-v0.1模型的GPTQ量化版本,支持法语、意大利语、德语、西班牙语和英语多语言推理。模型采用Mixtral架构,提示模板为'[INST] {prompt} [/INST]'。项目提供多种量化参数选项,可适应不同硬件和需求,在保证性能的同时降低资源消耗。该模型使用Apache 2.0许可发布。
Chinese-Mixtral - 使用Sparse MoE架构的中文Mixtral模型
Chinese-MixtralGithubMixtral大模型量化开源项目指令精调稀疏混合专家模型
模型基于Mistral.ai的Mixtral模型开发,经过中文增量训练与指令精调,具备处理长文本(原生支持32K上下文,实测可达128K)的能力。包括中文Mixtral基础模型与指令模型,显著提升数学推理和代码生成性能。通过llama.cpp进行量化推理,最低仅需16G内存。开源提供代码、训练脚本与详细教程,支持多种推理和部署工具,适合个人电脑本地快速部署量化模型。
Mixtral-8x7B-Instruct-v0.1-llamafile - 多语言支持的创新llamafile格式
GithubHuggingfaceMistral AIMixtral 8X7B Instructllamafile兼容性开源项目模型量化
探索适用于Mixtral 8X7B Instruct版本的创新llamafile格式,该格式支持在六个操作系统平台上的兼容性,并支持法语、意大利语、德语、西班牙语和英语等多种语言。通过使用Cosmopolitan Libc将LLM权重转换为可运行的二进制文件,使其成为高级机器学习项目的理想选择。根据应用需求利用高效的量化方法,实现与llama.cpp、LM Studio和koboldcpp等软件的无缝集成。通过Q4_K_M等量化选项平衡质量,或通过Q5_K_M实现机器学习任务的最佳性能。
Chinese-Mixtral-8x7B - 增强中文编解码能力的开源大模型
Chinese-Mixtral-8x7BGithubMoE模型增量预训练开源项目推理加速模型下载
Chinese-Mixtral-8x7B通过中文扩词表和增量预训练,提高了在中文编解码和生成理解能力。项目提供完整的开源模型及预训练代码,支持QLoRA训练和多种推理加速方案。其在中文知识和理解上的表现卓越,同时在英文方面也表现不俗,适用于各种中文自然语言处理应用场景。
SauerkrautLM-Mixtral-8x7B-Instruct - Mixtral-8x7B基础上的多语言指令微调大模型
DPO对齐GithubHuggingfaceSauerkrautLM-Mixtral-8x7B-Instruct多语言开源项目模型混合专家模型自然语言处理
SauerkrautLM-Mixtral-8x7B-Instruct是基于Mixtral-8x7B-Instruct的多语言指令微调模型,支持英、德、法、意、西五种语言。模型通过DPO对齐和数据增强技术训练,改善了德语等语言的自然表达。在多项基准测试中表现优异,德语RAG评估准确率达97.5%。该模型采用Apache 2.0许可,允许商业应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号