Project Icon

Mixtral-8x7B-v0.1

多语言预训练大语言模型 超越Llama 2 70B性能

Mixtral-8x7B是一款预训练的生成式稀疏专家混合大语言模型,在多数基准测试中性能优于Llama 2 70B。该模型支持法语、意大利语、德语、西班牙语和英语等多语言处理。开发者可通过Hugging Face transformers库或vLLM部署使用,并可采用半精度、8位和4位量化等方法降低内存占用。作为基础模型,Mixtral-8x7B不含内置审核机制,使用时需注意。

Llama-3-Taiwan-8B-Instruct - 基于Llama-3架构的大规模双语语言模型 专注中英文处理
GithubHuggingfaceLlama-3-Taiwan中文对话人工智能大型语言模型开源项目模型深度学习
Llama-3-Taiwan-8B是基于Llama-3架构开发的大规模双语语言模型,采用繁体中文和英文高质量语料进行训练。模型在法律、制造、医疗和电子等专业领域进行优化,支持8K上下文长度。通过繁体中文NLP基准测试验证,可应用于对话、生成、推理等多个场景。
Meta-Llama-3.1-8B-Instruct-abliterated - Llama 3.1 8B指令模型的无限制版本优化语言生成能力
GithubHuggingfaceLlama 3.1人工智能开源项目无审查模型模型自然语言处理语言模型
Meta-Llama-3.1-8B-Instruct-abliterated是一个经过abliteration技术处理的Llama 3.1 8B指令模型。该模型移除了内容限制,同时保持了原有性能。在IFEval、BBH等多项评测任务中表现优异。目前提供多种量化版本,便于在各类设备上部署。这个模型为研究人员提供了一个探索大型语言模型潜力的新选择。
Mistral-NeMo-Minitron-8B-Base - 高效压缩的大规模语言模型适用于多种自然语言生成任务
GithubHuggingfaceMistral-NeMo人工智能大语言模型开源项目模型模型压缩自然语言处理
Mistral-NeMo-Minitron-8B-Base是一个经过剪枝和蒸馏的基础文本生成模型。它采用4096维嵌入、32个注意力头、11520维MLP中间层和40层结构,结合分组查询注意力和旋转位置编码技术。该模型在MMLU等基准测试中表现优异,适用于多种自然语言生成任务。支持8k字符输入,可通过Transformers库轻松使用。
Llama-3.1-70B-Instruct - Meta推出的多语言大规模语言模型 支持商业与研究应用
GithubHuggingfaceMeta-Llama-3.1-70B多语言大语言模型开源项目指令微调模型预训练
Llama-3.1-70B-Instruct是Meta开发的多语言大型语言模型,支持8种语言,具有128k上下文窗口。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练,提升对话效果。支持文本和代码生成等自然语言任务,适用于商业和研究领域。该模型还可用于改进其他AI模型,包括合成数据生成和知识蒸馏。
Llama-3.2-3B - Meta推出Llama 3.2多语言大型语言模型系列
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,包括英语和德语。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练而成。它可用于对话、知识检索和摘要等任务,具有128K的上下文长度,并使用分组查询注意力机制提高推理效率。Llama-3.2-3B适用于商业和研究用途,可进一步微调以适应各种自然语言生成任务。模型遵循Llama 3.2社区许可协议。
Meta-Llama-3-8B-Instruct - Meta开发的大规模语言模型 支持多种自然语言处理任务
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct是Meta公司开发的大型语言模型之一,参数规模为8B。该模型经过指令微调,优化了对话性能,在多项行业基准测试中表现优异。模型采用改进的Transformer架构,具有8k上下文窗口,适用于英语的商业和研究场景。它可用于开发聊天助手、生成文本等多种自然语言处理应用,在开发过程中重点关注了实用性和安全性。
MIstral-QUantized-70b_Miqu-1-70b-iMat.GGUF - 优质法语对话能力的70B模型,适用于大容量VRAM
GithubHuggingfaceMiqu 1 70bMistral AI上下文大小开源项目模型法语量化
Miqu 1 70b是Mistral Medium Alpha的一个模型,由Mistral AI公司开发,适合法语使用者。该模型在法语对话中表现出色,智能性能与精调的Llama 2 70b相当,并倾向于避免过拟合。Miqu提供多种量化格式,Q4_K_S和Q3_K_M在48GB和36GB VRAM上支持完全卸载,满足大容量VRAM用户需求。虽然Miqu与CodeLlama 70b有相同的100万theta值,但在实验中证明其最大上下文能力为32k,相较于4k更具优势,并提供较低的周转率。
Ministral-8B-Instruct-2410 - 多功能高效语言模型,兼具多语言和代码处理能力
GithubHuggingfaceMinistral-8B-Instruct-2410Mistral AI开源项目授权使用模型研究目的许可证
Ministral-8B-Instruct-2410是一款高效的语言模型,具有128k上下文窗口、函数调用支持和多语言代码训练等特点,显著提升同类模型性能。该模型适用于本地智能设备和边缘计算,经过针对性优化以提升多语言和代码处理能力。根据Mistral Research License,该模型适用于非商业研究。Ministral-8B在知识、常识、代码、数学及多语言基准测试中表现优异,为广泛应用提供了强大的支持。
mixtral-instruct-awq - AWQ量化的Mixtral Instruct模型替代方案
AWQGithubHuggingfaceMixtral Instruct人工智能开源项目模型量化
这是一个经AWQ量化的Mixtral Instruct工作版本,旨在解决官方版本的功能问题。项目提供了Mixtral-8x7B-Instruct-v0.1模型的稳定实现,适合在资源受限环境中部署大型语言模型。该替代方案为开发者和研究人员提供了一个可靠的选择,有助于提高模型在实际应用中的效率。
Meta-Llama-3-8B-Instruct-GGUF - Llama 3系列8B指令模型性能超越前代70B版本
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta发布的Llama 3系列8B指令模型在15万亿多样化语料上训练,代码数据量是前代的4倍。采用GQA技术提升大上下文处理能力,性能超越Llama 2的70B版本。该模型在对话、问答和编程等任务表现出色,支持自定义系统提示以适应不同应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号