Project Icon

bert-tiny-finetuned-sms-spam-detection

BERT-Tiny模型实现高精度SMS垃圾信息检测

该项目基于BERT-Tiny模型,针对SMS垃圾信息检测任务进行了微调。模型在验证集上实现了98%的准确率,展现了优秀的性能。作为一个轻量级解决方案,它特别适用于资源受限的环境,如移动设备上的实时垃圾短信过滤。

squeezebert-uncased - SqueezeBERT:提高NLP任务效率的高效开源模型
GithubHuggingfaceSqueezeBERT开源项目微调模型组卷积语言模型预训练
SqueezeBERT是一个专注于提高自然语言处理任务效率的无大小写敏感的预训练模型。其架构通过分组卷积替换点对点全连接层,使其在Google Pixel 3设备上运行速度比bert-base-uncased快4.3倍。利用Mask Language Model和Sentence Order Prediction对模型进行了预训练,所使用的数据集包括BookCorpus和English Wikipedia。尽管模型尚未微调,但SqueezeBERT为文本分类任务奠定了坚实基础,建议使用squeezebert-mnli-headless作为起点。
paraphrase-TinyBERT-L6-v2 - 轻量级句子嵌入模型支持语义搜索与文本聚类
GithubHuggingfaceTinyBERTsentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
paraphrase-TinyBERT-L6-v2是基于sentence-transformers的句子嵌入模型,将句子和段落映射到768维密集向量空间。模型采用轻量级架构,主要应用于语义搜索和文本聚类。支持通过sentence-transformers或HuggingFace Transformers库进行调用,适用于计算资源受限的应用场景。
distilbert-base-uncased-mnli - DistilBERT零样本文本分类模型在MNLI数据集上的应用
DistilBERTGithubHuggingface开源项目文本分类机器学习模型自然语言推理零样本分类
DistilBERT零样本文本分类模型在MNLI数据集上微调,适用于多种英语文本分类任务。模型在MNLI和MNLI-mm评估中均达82.0%准确率,展现出优秀性能。虽然使用简便,但需注意潜在偏见问题。模型由Typeform团队开发,在AWS EC2 P3实例上训练。该模型为自然语言处理领域提供了有力工具,同时也引发了对AI公平性的思考。
jailbreak-classifier - 提示分类工具,增强系统安全与内容审核
GithubHuggingfaceJailbreak Classifier安全开源项目文本分类机器学习模型规范化
项目基于BERT模型微调,专用于识别破解与无害提示信息。利用jailbreak-classification数据集进行训练,可应用于安全和内容审核场景,提升系统安全性与审核能力,是一个多平台适用的解决方案。
bleurt-tiny-512 - 用于评估文本生成质量的轻量级模型
BERTBLEURTGithubHuggingface开源项目文本分类机器学习模型自然语言生成
BLEURT-tiny-512是Google Research开发的轻量级文本评估模型,基于BERT架构。该模型经WMT Metrics共享任务数据训练,主要用于评估自然语言生成质量。它可应用于文本分类,在生成文本评估方面表现优异。BLEURT-tiny-512为需要准确衡量文本生成输出的场景提供了有效工具,但用户应注意模型可能存在的偏见和局限性。
distilbert-base-uncased-go-emotions-student - 面向GoEmotions数据集的高效情感分类模型
GithubGoEmotionsHuggingface开源项目文本分类模型模型蒸馏语言模型零样本分类
该模型运用未标注GoEmotions数据集,利用零样本学习技术进行精炼。尽管其性能可能略逊于完全监督下的模型,但它展示了如何将复杂的自然语言推理模型简化为高效的模型,以便在未标注数据上进行分类器训练。
BertWithPretrained - 基于PyTorch实现的BERT模型及相关下游任务
BERTGithubPyTorchTransformer中文文本分类开源项目英文文本分类
该项目基于PyTorch实现了BERT模型及其相关下游任务,详细解释了BERT模型和每个任务的原理。项目支持分类、翻译、成对句子分类、多项选择、问答和命名实体识别等任务,涵盖中文和英语的自然语言处理。此外,项目还含有丰富的数据集和预训练模型配置文件。
BERTweet - 专为英语推文预训练的大规模语言模型,助力自然语言处理
BERTweetCOVID-19GithubRoBERTa开源项目英文推文语言模型
BERTweet是首个专为英语推文预训练的公共语言模型,基于RoBERTa预训练程序,使用850M条推文数据进行训练,包含普通推文和疫情相关推文。BERTweet提供多种预训练模型,能够无缝集成于transformers和fairseq框架,支持情感分析、命名实体识别等自然语言处理任务,为研究和应用提供有力支持。
BERTopic - 高效的Transformers主题建模,支持多种模式
BERTopicGithubPythonc-TF-IDFtransformers主题建模开源项目
BERTopic是一种利用Transformers和c-TF-IDF进行主题建模的技术,能够生成易于解释的密集主题聚类,同时保留关键词描述。该项目支持多种主题建模方法,如有监督、半监督和无监督模式,具有模块化和高扩展性。丰富的可视化功能和多种表示方法进一步支持深入分析。BERTopic还兼容多种嵌入模型,并支持多语言处理,适应不同应用场景。
chatglm_finetuning - ChatGLM模型微调教程
Githubchatglm-6bdeep_training开源项目微调推理训练
本项目提供详细的ChatGLM系列模型微调教程,支持全参数训练、Lora、AdaLora、IA3及P-Tuning-V2等方法。涵盖最新更新,如支持accelerator和colossalai训练,解除chatglm-6b-int4全参训练限制等。项目包含数据处理、推理脚本及多种训练参数设置,适合深度学习研究与应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号