Project Icon

splade

优化查询和文档检索的SPLADE稀疏模型

SPLADE项目使用BERT的MLM头和稀疏正则化来学习查询和文档的稀疏扩展,优化了检索性能。项目包含训练、索引和检索的代码,并支持在BEIR基准测试中评估。最新版本通过硬负样本采样、蒸馏和改进的预训练语言模型初始化,显著提升了检索效果。此外,SPLADE的稀疏表示优化了倒排索引的使用,提供了显式词汇匹配和可解释性等优点。经过优化的训练和正则化,SPLADE在域内外测试中表现优异,延迟性能与BM25相当。

opensearch-neural-sparse-encoding-doc-v2-distill - 神经稀疏编码模型优化文档检索效率
GithubHuggingfaceOpenSearch变压器模型开源项目文档检索模型神经稀疏编码自然语言处理
opensearch-neural-sparse-encoding-doc-v2-distill是一种先进的学习型稀疏检索模型,能将文档编码为30522维稀疏向量。该模型在BEIR基准测试中表现出色,展现了优秀的零样本性能和搜索相关性。其67M的参数量和0.504的平均NDCG@10分数,体现了模型的高效性。结合OpenSearch神经稀疏特性和Lucene倒排索引,可实现快速精准的文档检索。
opensearch-neural-sparse-encoding-doc-v1 - OpenSearch神经稀疏编码模型提升信息检索效率
GithubHuggingfaceOpenSearch开源项目搜索引擎文档检索机器学习模型模型神经稀疏编码
opensearch-neural-sparse-encoding-doc-v1是一款为OpenSearch开发的学习型稀疏检索模型。它能将文档转换为30522维稀疏向量,并采用高效的查询处理方法。该模型经MS MARCO数据集训练,实际性能堪比BM25。模型支持基于Lucene倒排索引的学习型稀疏检索,可通过OpenSearch高级API实现索引和搜索。在BEIR基准测试的13个子集上,该模型展现了优秀的零样本性能,体现了出色的搜索相关性和检索效率。
SearchEngine - 现代搜索引擎技术的核心原理与实践指南
Github召回开源项目排序搜索引擎查询词处理相关性
该项目系统地介绍搜索引擎核心技术,包括基础概念、相关性评估、查询处理、召回策略和排序算法。内容涵盖BERT模型在相关性判断中的应用,以及查询词处理和推荐系统的优化方法。项目详细讲解了倒排索引、向量召回、BERT模型应用等关键技术,并探讨了查询词分词、意图识别、排序模型训练等实际问题。通过幻灯片和视频资源,为开发者和研究人员提供搜索引擎技术的深入学习材料,这些内容对于理解和实现现代搜索引擎至关重要。
bert-multilingual-passage-reranking-msmarco - BERT多语言文本重排序模型优化搜索效果
BERTGithubHuggingface多语言开源项目搜索引擎机器学习模型模型训练
这是一个支持100多种语言的BERT段落重排序模型,通过对搜索查询和文本段落的语义匹配分析,可将搜索结果相关性提升61%。模型在MS MARCO数据集上训练,可无缝集成到Elasticsearch中,适用于多语言搜索优化场景。实测表明,其在英语性能与单语模型相当,在德语等其他语言上表现更优。
neural-cherche - 专注于神经搜索模型微调和快速推理的工具库
BM25ColBERTGithubNeural-ChercheSparseEmbedSplade开源项目
Neural-Cherche 是一个专为微调和推理神经搜索模型(如 Splade、ColBERT 和 SparseEmbed)设计的库,兼容多种设备。通过该库,用户可以高效地进行模型微调,并在离线和在线环境中执行推理。此外,Neural-Cherche 提供多种检索器和排序器,支持保存嵌入以避免重复计算,适用于多种信息检索任务,并附有便捷的安装步骤和详细文档。
LLM_Web_search - 增强本地LLM的网页搜索功能,结合DuckDuckGo和多种关键词提取技术
DuckDuckGoGithubLLM_Web_searchOkapi BM25SPLADEtext-generation-webui开源项目
本项目通过特定指令增强本地LLM的网页搜索能力,使用duckduckgo-search进行搜索,并使用LangChain的上下文压缩和Okapi BM25(或SPLADE)技术提取相关信息并添加至模型输出中。支持自定义正则表达式和网页信息读取,推荐使用Llama-3-8B-instruct模型以实现高效搜索与信息提取。提供多种搜索后端与关键词检索器选项,提高兼容性和适用性。
bm25s - 为文本检索提供极速Python BM25实现
BM25ElasticsearchGithubPythonScipy开源项目文本检索
BM25S为基于Python的文本检索排名函数,使用Scipy稀疏矩阵实现快速响应。其性能显著优于传统库,支持多种BM25变体,提供灵活API及Hugging Face集成,适合大规模数据的内存效率处理。
clip-retrieval - 构建高效图像和文本检索系统的开源工具
Githubclip-retrieval图像嵌入开源项目文本嵌入机器学习语义搜索
clip-retrieval 提供一个建立语义搜索系统的强大工具,使得用户能够迅速实现图像和文本的嵌入计算及索引构建。该项目能在20小时内处理超过1亿的图文嵌入,支持远程查询、数据过滤以及简洁的前端用户界面,适用于学术研究和商业应用。
deepsparse - 优化CPU上深度学习推理的高效稀疏性使用
CPU推理DeepSparseGithubLLM支持开源项目模型量化稀疏性
DeepSparse是一个专为CPU优化的深度学习推理运行时,通过使用稀疏性显著加快模型推理速度。结合SparseML优化库,DeepSparse支持模型剪枝和量化,在CPU上实现卓越性能。支持各种计算机视觉和自然语言处理模型,包括BERT、ViT、ResNet、YOLOv5/8等。此外,DeepSparse现已支持高效的LLM推理,对稀疏量化模型实现多倍加速。可通过PyPI安装,并提供多种API便于部署。
headless-vector-search - 无头向量搜索解决方案,提升文档检索效率
Edge FunctionsGitHub ActionsGithubHeadless Vector SearchOpenAISupabase开源项目
该项目提供了一种向量搜索功能,旨在提高文档站点的检索效率。作为无头软件,它可以轻松集成到现有网站中。项目通过初始化数据库中的架构,并借助GitHub Action将Markdown文档转换为向量存储。在Supabase和OpenAI技术的支持下,系统处理用户查询并生成类似ChatGPT的响应。配置简单,只需几步即可完成设置。目前已在Supabase官方文档站点得到应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号