Project Icon

Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic

多语种量化优化模型,显著降低内存占用

通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。

Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
Llama-3.2-90B-Vision-Instruct-FP8-dynamic - 基于Meta-Llama架构的FP8量化多语言视觉对话模型
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型模型量化视觉语言模型
这是一个基于Meta-Llama-3.2架构开发的视觉语言模型,包含900亿参数。通过FP8量化技术优化,将模型存储空间和GPU内存需求降低约50%。模型支持图像理解和多语言文本生成,主要应用于智能对话系统。借助vLLM后端可实现高效部署和OpenAI兼容服务。
Llama-3.1-Nemotron-70B-Instruct-bnb-4bit - 基于Unsloth技术的大语言模型高性能微调框架
GithubHuggingfaceLlama 3.1NVIDIA代码优化开源项目模型模型微调深度学习
Unsloth优化的Llama 3.1 Nemotron 70B指令模型,在保持模型性能的同时实现内存占用降低70%、训练速度提升2-5倍的优化效果。该框架支持Llama 3.2、Mistral、Phi-3.5等主流大语言模型的微调,提供适配Google Colab的入门级notebooks,支持GGUF、vLLM等多种导出格式。
Llama-3.2-3B-GGUF - 高性能多语言型大语言模型支持8种语言
GithubHuggingfaceLlama 3.2人工智能多语言开源项目机器学习模型语言模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,适用于对话和代理任务。本项目使用llama.cpp对原模型进行量化,保留了128k上下文长度和分组查询注意力等特性。该模型在行业基准测试中表现优异,可用于聊天、知识检索、摘要等自然语言生成任务,适合商业和研究使用。
Meta-Llama-3.1-405B-Instruct-GGUF - Meta-Llama 3.1量化版大模型支持多语种文本生成
GGUFGithubHuggingfaceMeta-Llama-3.1-405B-Instruct大语言模型开源项目文本生成模型量化模型
Meta-Llama-3.1-405B-Instruct模型的GGUF量化版本支持英语、德语、法语在内的8种语言文本生成。通过2-bit和3-bit量化技术优化,可在llama.cpp、LM Studio等主流框架上运行,方便开发者进行本地部署和应用开发。
Llama-3.2-1B-Instruct-q4f32_1-MLC - 基于MLC格式的Llama指令微调对话模型支持多平台轻量级部署
GithubHuggingfaceLlamaMLC人工智能开源框架开源项目模型语言模型
基于Meta Llama-3.2-1B-Instruct转换的MLC格式模型,采用q4f32_1量化方案,针对MLC-LLM和WebLLM项目进行优化。模型提供命令行交互、REST服务部署和Python API调用功能,可灵活应用于各类场景。具备快速部署和高效对话能力,适合构建轻量级AI对话应用。
Meta-Llama-3.1-70B-Instruct-GGUF - LLaMA 3.1模型量化版本集合及性能参数对比
GithubHuggingfaceLlama 3.1人工智能大语言模型开源项目机器学习模型模型量化
Meta-Llama-3.1-70B-Instruct模型量化版本集合采用llama.cpp的imatrix压缩方式,包含从Q8_0到IQ3_M共13种量化等级选择。模型文件大小范围为74.98GB至31.94GB,适配LM Studio运行环境。Q6_K、Q5_K系列及IQ4_XS等中等压缩比版本在性能与资源占用方面达到较好平衡。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 - Meta-Llama-3.1-8B-Instruct模型的INT4量化版本
GPTQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,由社区开发。该版本将原FP16模型量化为INT4,支持多语言对话,在行业基准测试中表现优异。模型仅需约4GB显存即可加载,兼容多种推理框架。项目提供详细使用指南和量化复现方法,适用于资源受限环境下的高效部署。
Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号