Project Icon

tdmpc2

跨领域连续控制的可扩展世界模型

TD-MPC2是一种可扩展的基于模型的强化学习算法,在104个连续控制任务中展现出色性能。该算法使用317M参数的单一模型可执行80个跨领域任务。项目提供300多个模型检查点和多任务数据集,支持状态和像素输入,为模型强化学习研究提供重要资源。

rl-mpc-locomotion - 强化学习与模型预测控制结合的四足机器人运动框架
GithubIsaac GymRL MPC Locomotion四足机器人开源项目强化学习模型预测控制
这个项目为四足机器人运动任务开发了一个快速仿真和强化学习训练框架。它采用分层控制结构,结合高层策略网络和低层模型预测控制器。其MPC控制器基于Cheetah Software改写,便于移植到主流仿真平台。项目利用NVIDIA Isaac Gym进行并行训练,使用Unitree Robotics的Aliengo模型,并实现了从仿真到实物的迁移。该框架适用于多种四足机器人类型和步态,为相关研究提供了有力支持。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
awesome-model-based-RL - 模型化强化学习论文与资源汇总
DreamerGithubMCTS世界模型开源项目强化学习模型学习
本项目汇集了模型化强化学习(Model-Based RL)领域的精选研究论文,持续更新前沿进展。项目提供了将算法分为'学习模型'和'给定模型'两类的分类方法。收录内容包括经典论文、最新会议论文、教程和代码库,涵盖从基础理论到应用的多个主题。这一资源集合为研究人员提供了全面的参考材料,反映了模型化强化学习领域的发展动态。
dreamerv3 - 多领域任务的通用强化学习算法
AI训练DreamerV3Github世界模型开源项目强化学习性能优化
DreamerV3是一种创新的强化学习算法,通过世界模型实现多领域任务掌控。其特点是使用固定超参数,具有卓越的稳健性和扩展性。随着模型规模增加,性能和数据效率同步提升。该开源项目提供完整实现,包含训练脚本和使用指南,为研究人员和开发者提供了探索先进强化学习技术的平台。
MiniCPM-V-2 - 多模态语言模型,支持跨平台高效部署
GithubHuggingfaceMiniCPM-V场景文本理解多模态开源项目模型深度学习视觉问答
MiniCPM-V 2.0是一个多模态大模型,以高效端侧部署和可靠性为特色,支持OCRBench和TextVQA等基准测试。该模型结合RLHF多模态技术,减少幻觉生成,并能处理任意宽高比的高分辨率图像。MiniCPM-V 2.0可在多数GPU和PC上高效运行,拥有中英双语支持,并能够在移动设备上执行,提供多种部署选择。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
MotionCtrl - 视频生成中的动作控制统一解决方案
AIGithubMotionCtrl动作控制开源项目腾讯视频生成
MotionCtrl是一个统一的视频生成动作控制系统,可独立调节生成视频中的相机和物体运动。该项目兼容SVD、VideoCrafter和AnimateDiff等多个视频生成模型,并提供训练代码、推理脚本和在线演示。通过MotionCtrl,研究人员和内容创作者能够更精确地控制生成视频的动作效果,从而提高视频生成的质量和灵活性。
awesome-multi-modal-reinforcement-learning - 多模态强化学习前沿论文与研究资源汇总
Github多模态强化学习开源项目表征学习视觉强化学习语言模型预训练
本项目收集了多模态强化学习(MMRL)领域的前沿研究论文和资源。内容涵盖视觉、语言及其结合的MMRL方法,包括ICLR、NeurIPS、ICML等顶级会议论文,以及预训练、表征学习、视觉推理等热点主题。项目持续追踪最新进展,为MMRL研究提供全面参考。
MTR - 自动驾驶多模态运动预测的先进框架
GithubMotion TransformerWaymo数据集多模态运动预测开源项目神经网络自动驾驶
MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。
multimodal-maestro - 多模态AI模型控制与高效提示策略框架
AI提示GithubMultimodal-MaestroPython图像处理大型多模态模型开源项目
multimodal-maestro是一个开源框架,旨在增强对大型多模态AI模型的控制能力。该项目提供先进的提示策略,使模型能够执行复杂的视觉理解任务。支持图像标注、掩码生成等功能,并具有简洁的API设计。multimodal-maestro能够充分发挥GPT-4V等多模态模型的潜力,实现更精准的视觉分析和处理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号