Project Icon

MiniCPM-Llama3-V-2_5-int4

轻量级视觉问答模型实现实时图像对话

MiniCPM-Llama3-V-2_5-int4通过int4量化技术实现低内存视觉问答功能,仅需9GB显存即可运行。基于Hugging Face框架开发,支持实时图像对话和流式输出,为视觉AI应用提供高效且资源友好的解决方案。

cogvlm2-llama3-chinese-chat-19B - 双语视觉语言模型,支持大规模文本和图像解析
CogVLM2GithubHuggingface中文支持开源模型开源项目文本生成模型视觉理解
CogVLM2-LLaMA3-Chinese 是一个开源模型,支持中文和英文,表现出显著性能提升,比如在 TextVQA 和 DocVQA 基准测试中。这一模型支持最大8K的文本长度和1344*1344的图像分辨率,特别适合文本和图像的理解与对话任务。构建于Meta-Llama-3-8B-Instruct基础之上,用户可在ZhipuAI开放平台进行实际体验,适用于需要强大图像解析和多语言支持的场景。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 - Meta-Llama-3.1-8B-Instruct模型的INT4量化版本
GPTQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,由社区开发。该版本将原FP16模型量化为INT4,支持多语言对话,在行业基准测试中表现优异。模型仅需约4GB显存即可加载,兼容多种推理框架。项目提供详细使用指南和量化复现方法,适用于资源受限环境下的高效部署。
Llama-3.2-11b-vision-uncensored - 图像处理与自然语言生成的先进集成工具
AI助手GithubHuggingfacealpindale/Llama-3.2-11B-Vision-Instruct图像处理开源项目模型模型量化自然语言生成
Llama-3.2-11b-vision-uncensored项目结合了图像处理和自然语言生成,使用Peft和torch库,专注于提供直接且无偏见的AI响应。自定义配置支持高效模型加载,适合要求高度注意力的场景。
CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoGithubMeta-Llama-3-8B-Instruct图像理解开源项目视频理解
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
Meta-Llama-3-8B-Instruct-FP8 - FP8量化版Meta Llama 3实现内存占用减半
FP8量化GithubHuggingfaceMeta-Llama-3vLLM大语言模型开源项目模型模型优化
这是一个通过8位浮点(FP8)量化技术优化的Meta Llama 3模型,在仅占用原模型一半存储空间和GPU内存的同时,保持了99.28%的性能水平。模型基于vLLM后端运行,支持英语对话场景下的商业及研究应用,可用于构建AI助手等应用。
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
MiniCPM3-4B - 轻量高效的开源模型支持长文本处理和函数调用
GithubHuggingfaceMiniCPM3人工智能大语言模型开源模型开源项目机器学习模型
MiniCPM3-4B是一款开源语言模型,仅用4B参数就达到了接近GPT-3.5-Turbo的性能。它具备32k上下文窗口、函数调用和代码解释器等功能,在中英双语、数学和编程等多个基准测试中表现出色。通过创新的训练策略,MiniCPM3-4B实现了与7B-9B模型相当的能力,为资源受限的AI应用场景提供了高效选择。
Meta-Llama-3.1-70B-Instruct-AWQ-INT4 - Llama 3.1 70B指令模型INT4量化版 多语言对话优化
AutoAWQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta AI的Llama 3.1 70B指令模型经社区量化为INT4精度,显著降低内存需求。这一多语言模型针对对话场景优化,在行业基准测试中表现优异。支持通过Transformers、AutoAWQ、TGI和vLLM等多种方式部署使用,为开发者提供灵活选择。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号