Project Icon

awesome-exploration-rl

强化学习探索策略全面指南

该项目聚焦强化学习探索方法,提供最新研究论文、分类体系和可视化案例。涵盖经典和前沿探索策略,持续追踪领域进展。对研究人员和实践者而言是宝贵参考,可用于研究探索-利用权衡或解决具体挑战。项目内容全面且定期更新,是强化学习探索领域的重要资源库。

Awesome Exploration Methods in Reinforcement Learning

Updated on 2024.06.12

  • Here is a collection of research papers for Exploration methods in Reinforcement Learning (ERL). The repository will be continuously updated to track the frontier of ERL. Welcome to follow and star!

  • The balance of exploration and exploitation is one of the most central problems in reinforcement learning. In order to give readers an intuitive feeling for exploration, we provide a visualization of a typical hard exploration environment in MiniGrid below. In this task, a series of actions to achieve the goal often require dozens or even hundreds of steps, in which the agent needs to fully explore different state-action spaces in order to learn the skills required to achieve the goal.

minigrid_hard_exploration
A typical hard-exploration environment: MiniGrid-ObstructedMaze-Full-v0.

Table of Contents

A Taxonomy of Exploration RL Methods

(Click to Collapse)

In general, we can divide reinforcement learning process into two phases: collect phase and train phase. In the collect phase, the agent chooses actions based on the current policy and then interacts with the environment to collect useful experience. In the train phase, the agent uses the collected experience to update the current policy to obtain a better performing policy.

According to the phase the exploration component is explicitly applied, we simply divide the methods in Exploration RL into two main categories: Augmented Collecting Strategy, Augmented Training Strategy:

  • Augmented Collecting Strategy represents a variety of different exploration strategies commonly used in the collect phase, which we further divide into four categories:

    • Action Selection Perturbation
    • Action Selection Guidance
    • State Selection Guidance
    • Parameter Space Perturbation
  • Augmented Training Strategy represents a variety of different exploration strategies commonly used in the train phase, which we further divide into seven categories:

    • Count Based
    • Prediction Based
    • Information Theory Based
    • Entropy Augmented
    • Bayesian Posterior Based
    • Goal Based
    • (Expert) Demo Data

Note that there may be overlap between these categories, and an algorithm may belong to several of them. For other detailed survey on exploration methods in RL, you can refer to Tianpei Yang et al and Susan Amin et al.


A non-exhaustive, but useful taxonomy of methods in Exploration RL. We provide some example methods for each of the different categories, shown in blue area above.

Here are the links to the papers that appeared in the taxonomy:

[1] Go-Explore: Adrien Ecoffet et al, 2021
[2] NoisyNet, Meire Fortunato et al, 2018
[3] DQN-PixelCNN: Marc G. Bellemare et al, 2016
[4] #Exploration Haoran Tang et al, 2017
[5] EX2: Justin Fu et al, 2017
[6] ICM: Deepak Pathak et al, 2018
[7] RND: Yuri Burda et al, 2018
[8] NGU: Adrià Puigdomènech Badia et al, 2020
[9] Agent57: Adrià Puigdomènech Badia et al, 2020
[10] VIME: Rein Houthooft et al, 2016
[11] EMI: Wang et al, 2019
[12] DIYAN: Benjamin Eysenbach et al, 2019
[13] SAC: Tuomas Haarnoja et al, 2018
[14] BootstrappedDQN: Ian Osband et al, 2016
[15] PSRL: Ian Osband et al, 2013
[16] HER Marcin Andrychowicz et al, 2017
[17] DQfD: Todd Hester et al, 2018
[18] R2D3: Caglar Gulcehre et al, 2019

Papers

format:
- [title](paper link) (presentation type, openreview score [if the score is public])
  - author1, author2, author3, ...
  - Key: key problems and insights
  - ExpEnv: experiment environments

ICLR 2024

(Click to Collapse)

NeurIPS 2023

(Click to Collapse)
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号