Project Icon

anomalib

视觉异常检测算法开发与部署工具库

Anomalib是一个专注于视觉异常检测的开源深度学习库。它提供多种先进算法实现,支持模型训练、推理、基准测试和超参数优化。该库基于Lightning框架开发,简化了代码结构,并支持模型导出为OpenVINO格式以加速推理。Anomalib还包含便捷的推理工具,方便用户快速部署异常检测模型。其模块化设计和完善的文档使其成为研究和应用视觉异常检测的理想工具。

dlib - 现代C++机器学习工具包,实现高效复杂软件开发
C++GithubPython APIdlib开源项目机器学习编译
dlib是一个功能丰富的C++工具库,专注于机器学习解决方案,支持快速编译和高效运算。提供完整的Python集成和标准Boost许可,适用于各类项目。
anole - Anole实现图文交错生成的开源多模态模型
AIAnoleGithub图文生成多模态模型开源开源项目
Anole是一款开源的大型多模态模型,具备图文交错生成能力。该模型通过微调约6000张图像数据集,在Chameleon基础上实现了图像生成和理解功能。Anole支持文本到图像生成、图文交错生成、文本生成和多模态理解,为多模态AI研究提供了新的可能性。
Evidently AI - 开源AI监控与机器学习观测平台
AI工具AI开发Evidently AI数据偏移数据质量机器学习模型监控模型训练热门
Evidently AI是一个开源的AI质量协作平台,旨在评估、测试和监控机器学习、LLM及通用AI应用。此平台帮助用户管理AI产品质量,维护模型性能,及时识别及应对数据偏移和异常。它支持文本、表格数据和嵌入式数据的监控,适用于各种规模的公司,提供直观的界面与丰富的可视化功能。
OBBDetection - 多框架支持的开源目标检测工具箱 提供灵活表示方法
GithubMMdetectionOBBDetection开源项目深度学习目标检测计算机视觉
OBBDetection是基于MMdetection v2.2的开源目标检测工具箱。它支持多种检测框架,包括RoI Transformer和Gliding Vertex等。该工具箱提供灵活的检测框表示方法,涵盖水平边界框、定向边界框和4点框。OBBDetection实现了S2ANet、Oriented R-CNN等多种最新定向目标检测方法,同时也兼容多种水平检测算法。作为一个全面的目标检测工具,它继承了MMdetection的特性,适用于各种复杂场景的目标检测任务。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
opencv - OpenCV开源计算机视觉库资源与贡献指导
AIGithubOpenCV开源库开源项目文档计算机视觉
OpenCV是开源的计算机视觉库,提供详尽的文档、在线课程和活跃的Q&A论坛。用户可在GitHub上报告问题和贡献代码,需遵循明确的贡献指南。此外,OpenCV支持提交社区项目和参与志愿者活动,通过多个平台获取最新的计算机视觉与AI动态。
Binoculars - 无需训练的AI文本检测工具
AI生成文本检测BinocularsGithub开源项目语言模型零样本领域无关
Binoculars是一款无需训练数据的AI文本检测工具,利用语言模型预训练数据集重叠原理识别生成内容。提供Python接口和在线演示,支持零样本检测,目前主要适用于英语文本。该项目为AI文本识别领域引入了新的解决思路。Binoculars适用于学术界、新闻媒体、内容平台等需要识别AI生成文本的场景,有助于维护信息真实性和原创性。
cleanvision - 图像数据集问题自动检测工具,提升计算机视觉项目质量
CleanVisionGithub图像数据集开源项目数据质量数据问题检测计算机视觉
CleanVision是一个开源的图像数据集审核工具,能自动检测模糊、曝光不当和重复等常见问题。它为计算机视觉项目提供了数据预处理解决方案,支持多种图像格式,适用于分类、分割和对象检测等任务。开发者只需几行Python代码即可快速审核数据集,有助于提高机器学习模型的训练质量。
pyoats - 灵活强大的时间序列异常检测Python库
GithubOATS开源项目异常检测时间序列机器学习
pyoats是一个专注于时间序列异常检测的开源Python库。它整合了多种先进检测算法,支持单变量和多变量时间序列分析,并提供统一的输出接口。该项目不仅集成了PyTorch、TensorFlow等深度学习框架,还包含传统统计方法。pyoats旨在简化异常检测实验流程,为数据科学家和工程师提供了一个功能丰富、使用灵活的工具。
ImageAI - 使用简便的代码实现深度学习和计算机视觉功能的开源Python库
GithubImageAI对象检测开源项目深度学习自定义模型训练计算机视觉
ImageAI是一款开源的Python库,帮助开发者使用简便的代码实现深度学习和计算机视觉功能。该库支持图像预测、目标检测、视频检测及对象跟踪等多种功能。新版本引入了PyTorch后端和TinyYOLOv3模型训练,提升了性能并扩展了功能。用户还可以训练自定义模型识别新对象。有关如何安装和使用ImageAI的详细信息,请参阅项目文档和指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号